Skip to main content
Log in

The 6-item CTS symptoms scale: a brief outcomes measure for carpal tunnel syndrome

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Objective

To develop a psychometrically appropriate brief symptoms measure of carpal tunnel syndrome (CTS).

Methods

Preoperative CTS 11-item symptom severity and 8-item functional status scales from 693 patients (71% women) with CTS were subjected to exploratory factor analysis and item response theory (IRT) analysis yielding a revised CTS symptoms scale. A validation sample of 213 patients (68% women) with CTS completed the 11-item disabilities of the arm, shoulder and hand (QuickDASH), and the revised symptoms scale and 116 patients also completed the original CTS symptom severity scale (median interval 11 days).

Results

Of the 11 CTS symptom severity scale items, 2 items that on factor analysis associated with the functional status items were removed. After IRT recalibrations of the remaining symptom severity scale items, 2 non-fitting items were removed and 2 items were merged creating the 6-item CTS symptoms scale. Factor analysis showed one dominant factor explaining 58% of the variance. Reliability was high (Cronbach alpha = 0.86; IRT person separation reliability = 0.88). No item displayed significant differential item functioning. The 6-item CTS symptoms scale showed strong correlation with the QuickDASH (r = 0.70) and agreement with the original symptom severity scale (ICC = 0.80).

Conclusion

The 6-item CTS symptoms scale has good reliability and validity and can be used to measure symptom severity and treatment outcome in CTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CTS:

Carpal tunnel syndrome

DASH:

Disabilities of the arm, shoulder and hand

EFA:

Exploratory factor analysis

IRT:

Item response theory

PCM:

Partial credit model

References

  1. Katz, J. N., Gelberman, R. H., Wright, E. A., Lew, R. A., & Liang, M. H. (1994). Responsiveness of self-reported and objective measures of disease severity in carpal tunnel syndrome. Medical Care, 32, 1127–1133. doi:10.1097/00005650-199411000-00005.

    Article  PubMed  CAS  Google Scholar 

  2. Atroshi, I., Gummesson, C., Johnsson, R., & Sprinchorn, A. (1999). Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. The Journal of Hand Surgery, 24, 398–404. doi:10.1053/jhsu.1999.0398.

    Article  PubMed  CAS  Google Scholar 

  3. Agabegi, S. S., Freiberg, R. A., Plunkett, J. M., & Stern, P. J. (2007). Thumb abduction strength measurement in carpal tunnel syndrome. The Journal of Hand Surgery, 32, 859–866. doi:10.1016/j.jhsa.2007.04.007.

    Article  PubMed  Google Scholar 

  4. Mallette, P., Zhao, M., Zurakowski, D., & Ring, D. (2007). Muscle atrophy at diagnosis of carpal and cubital tunnel syndrome. The Journal of Hand Surgery, 32, 855–858. doi:10.1016/j.jhsa.2007.03.009.

    Article  PubMed  Google Scholar 

  5. Levine, D. W., Simmons, B. P., Koris, M. J., Daltroy, L. H., Hohl, G. G., Fossel, A. H., et al. (1993). A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. The Journal of Bone and Joint Surgery. American Volume, 75, 1585–1592.

    PubMed  CAS  Google Scholar 

  6. Atroshi, I., Johnsson, R., & Sprinchorn, A. (1998). Self-administered outcome instrument in carpal tunnel syndrome: reliability, validity and responsiveness evaluated in 102 patients. Acta Orthopaedica Scandinavica, 69, 82–88.

    Article  PubMed  CAS  Google Scholar 

  7. Mondelli, M., Reale, F., Sicurelli, F., & Padua, L. (2000). Relationship between the self-administered Boston questionnaire and electrophysiological findings in follow-up of surgically-treated carpal tunnel syndrome. Journal of Hand Surgery (Edinburgh, Lothian), 25, 128–134. doi:10.1054/jhsb.2000.0361.

    CAS  Google Scholar 

  8. Rosales, R. S., Delgado, E. B., & Diez de la Lastra-Bosch, I. (2002). Evaluation of the Spanish version of the DASH and carpal tunnel syndrome health-related quality-of-life instruments: cross-cultural adaptation process and reliability. The Journal of Hand Surgery, 27, 334–343. doi:10.1053/jhsu.2002.30059.

    Article  PubMed  Google Scholar 

  9. Leite, J. C., Jerosch-Herold, C., & Song, F. (2006). A systematic review of the psychometric properties of the Boston Carpal Tunnel Questionnaire. BMC Musculoskeletal Disorders, 7, 78. doi:10.1186/1471-2474-7-78.

    Article  PubMed  Google Scholar 

  10. de Campos, C. C., Manzano, G. M., Leopoldino, J. F., Nobrega, J. A., Sanudo, A., de Araujo, P. C., et al. (2004). The relationship between symptoms and electrophysiological detected compression of the median nerve at the wrist. Acta Neurologica Scandinavica, 110, 398–402. doi:10.1111/j.1600-0404.2004.00332.x.

    Article  PubMed  Google Scholar 

  11. Imaeda, T., Uchiyama, S., Toh, S., Wada, T., Okinaga, S., Sawaizumi, T., et al. (2007). Validation of the Japanese Society for surgery of the hand version of the carpal tunnel syndrome instrument. Journal of Orthopaedic Science, 12, 14–21. doi:10.1007/s00776-006-1087-9.

    Article  PubMed  Google Scholar 

  12. Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38, II28–II42. doi:10.1097/00005650-200009002-00007.

    Article  PubMed  CAS  Google Scholar 

  13. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park, CA: Sage Publications.

    Google Scholar 

  14. Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  15. Stroud, M. W., McKnight, P. E., & Jensen, M. P. (2004). Assessment of self-reported physical activity in patients with chronic pain: Development of an abbreviated Roland-Morris disability scale. Journal of Pain, 5, 257–263. doi:10.1016/j.jpain.2004.04.002.

    Article  PubMed  Google Scholar 

  16. Petersen, M. A., Groenvold, M., Aaronson, N., Blazeby, J., Brandberg, Y., de Graeff, A., et al. (2006). Item response theory was used to shorten EORTC QLQ-C30 scales for use in palliative care. Journal of Clinical Epidemiology, 59, 36–44. doi:10.1016/j.jclinepi.2005.04.010.

    Article  PubMed  Google Scholar 

  17. Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(Suppl 1), 5–18. doi:10.1007/s11136-007-9198-0.

    Article  PubMed  Google Scholar 

  18. Beaton, D. E., Wright, J. G., & Katz, J. N. (2005). Development of the QuickDASH: Comparison of three item-reduction approaches. The Journal of Bone and Joint Surgery. American Volume, 87, 1038–1046. doi:10.2106/JBJS.D.02060.

    Article  PubMed  Google Scholar 

  19. Gummesson, C., Ward, M. M., & Atroshi, I. (2006). The shortened disabilities of the arm, shoulder and hand questionnaire (QuickDASH): Validity and reliability based on responses within the full-length DASH. BMC Musculoskeletal Disorders, 7, 44. doi:10.1186/1471-2474-7-44.

    Article  PubMed  Google Scholar 

  20. Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83, 1198–1202. doi:10.2307/2290157.

    Article  Google Scholar 

  21. Lorenzo-Seva, U., & Ferrando, P. J. (2006). FACTOR: A computer program to fit the exploratory factor analysis model. Behavior Research Methods, 38, 88–91.

    PubMed  Google Scholar 

  22. Finney, S. J., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 269–314). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  23. Panter, A. T., Swygert, K. A., Grant, D. W., & Tanaka, J. S. (1997). Factor analytic approaches to personality item-level data. Journal of Personality Assessment, 68, 561–589. doi:10.1207/s15327752jpa6803_6.

    Article  PubMed  CAS  Google Scholar 

  24. Muthén, B., & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. The British Journal of Mathematical and Statistical Psychology, 38, 171–189.

    Google Scholar 

  25. Benson, J., & Fleishman, J. A. (1994). The robustness of maximum likelihood and distribution-free estimators to non-normality in confirmatory factor analysis. Quality & Quantity, 28, 117–136. doi:10.1007/BF01102757.

    Article  Google Scholar 

  26. Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7, 557–595.

    Article  Google Scholar 

  27. Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association.

    Book  Google Scholar 

  28. Hambleton, R. K. (2005). Applications of item response theory to improve health outcomes assessment: Developing item banks, linking instruments, and computer-adaptive testing. In J. Lipscomb, C. C. Gotay, & C. Snyder (Eds.), Outcomes assessment in cancer (pp. 445–464). Cambridge: Cambridge University Press.

    Google Scholar 

  29. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research. (Reprinted by University of Chicago Press, 1980).

  30. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174. doi:10.1007/BF02296272.

    Article  Google Scholar 

  31. Wu, M. L., Adams, R. J., & Wilson, M. (2007). ConQuest: Generalized Item Response Modeling Software. Hawthorn, Australia: Australian Council for Educational Research (ACER).

    Google Scholar 

  32. Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Chicago: MESA Press.

    Google Scholar 

  33. Cole, J. C., Rabin, A. S., Smith, T. L., & Kaufman, A. S. (2004). Development and validation of a Rasch-derived CES-D short form. Psychological Assessment, 16, 360–372. doi:10.1037/1040-3590.16.4.360.

    Article  PubMed  Google Scholar 

  34. Shepard, L. A. (1985). Identifying bias in test items. In B. F. Green (Ed.), New directions in testing and measurement: Issues in testing–Coaching, disclosure, and test bias (pp. 79–104). San Francisco: Jossey-Bass.

    Google Scholar 

  35. Smith, G. T., McCarthy, D. M., & Anderson, K. G. (2000). On the sins of short-form development. Psychological Assessment, 12, 102–111. doi:10.1037/1040-3590.12.1.102.

    Article  PubMed  CAS  Google Scholar 

  36. Spies-Dorgelo, M. N., Terwee, C. B., Stalman, W. A., & van der Windt, D. A. (2006). Reproducibility and responsiveness of the symptom severity scale and the hand and finger function subscale of the Dutch arthritis impact measurement scales (Dutch-AIMS2-HFF) in primary care patients with wrist or hand problems. Health and Quality of Life Outcomes, 4, 87. doi:10.1186/1477-7525-4-87.

    Article  PubMed  Google Scholar 

  37. Dieleman, J. P., Kerklaan, J., Huygen, F. J., Bouma, P. A., & Sturkenboom, M. C. (2008). Incidence rates and treatment of neuropathic pain conditions in the general population. Pain, 137, 681–688. doi:10.1016/j.pain.2008.03.002.

    Article  PubMed  Google Scholar 

  38. Atroshi, I., Larsson, G. U., Ornstein, E., Hofer, M., Johnsson, R., & Ranstam, J. (2006). Outcomes of endoscopic surgery compared with open surgery for carpal tunnel syndrome among employed patients: Randomised controlled trial. British Medical Journal, 332, 1473–1476. doi:10.1136/bmj.38863.632789.1F.

    Article  PubMed  Google Scholar 

  39. Atroshi, I., Breidenbach, W. C., & McCabe, S. J. (1997). Assessment of the carpal tunnel outcome instrument in patients with nerve-compression symptoms. The Journal of Hand Surgery, 22A, 222–227. doi:10.1016/S0363-5023(97)80155-4.

    Article  Google Scholar 

  40. Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey manual and interpretation guide. Boston: New England Medical Center.

    Google Scholar 

  41. Katz, J. N., Keller, R. B., Simmons, B. P., Rogers, W. D., Bessette, L., Fossel, A. H., et al. (1998). Maine carpal tunnel study: Outcomes of operative and nonoperative therapy for carpal tunnel syndrome in a community-based cohort. The Journal of Hand Surgery, 23, 697–710. doi:10.1016/S0363-5023(98)80058-0.

    Article  PubMed  CAS  Google Scholar 

  42. Atroshi, I., Gummesson, C., McCabe, S. J., & Ornstein, E. (2007). The SF-6D health utility index in carpal tunnel syndrome. Journal of Hand Surgery (Edinburgh, Lothian), 32, 198–202. doi:10.1016/j.jhsb.2006.11.002.

    CAS  Google Scholar 

Download references

Acknowledgment

Funding

This research was supported by Skane county council’s research and development foundation, Hässleholm Hospital, and Umeå University, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isam Atroshi.

Appendix

Appendix

The 6-item CTS symptoms scale

Table 6 The following questions refer to your symptoms for a typical 24-h period during the past 2 weeks. Mark one answer to each symptom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atroshi, I., Lyrén, PE. & Gummesson, C. The 6-item CTS symptoms scale: a brief outcomes measure for carpal tunnel syndrome. Qual Life Res 18, 347–358 (2009). https://doi.org/10.1007/s11136-009-9449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-009-9449-3

Keywords

Navigation