Skip to main content
Log in

The stability of the deterministic Skorokhod problem is undecidable

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

The Skorokhod problem arises in studying reflected Brownian motion (RBM) and the associated fluid model on the non-negative orthant. This problem specifically arises in the context of queueing networks in the heavy traffic regime. One of the key problems is that of determining, for a given deterministic Skorokhod problem, whether for every initial condition all solutions of the problem staring from the initial condition are attracted to the origin. The conditions for this attraction property, called stability, are known in dimension up to three, but not for general dimensions. In this paper we explain the fundamental difficulties encountered in trying to establish stability conditions for general dimensions. We prove the existence of dimension \(d_0\) such that stability of the Skorokhod problem associated with a fluid model of an RBM in dimension \(d\ge d_0\) is an undecidable property, when the starting state is a part of the input. Namely, there does not exist an algorithm (a constructive procedure) for identifying stable Skorokhod problem in dimensions \(d\ge d_0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, H., Yao, D.: Fundamentals of Queueing Networks: Performance, Asymptotics and Optimization. Springer, Berlin (2001)

    Book  Google Scholar 

  2. Harrison, J.M.: Brownian Motion and Stochastic Flow Systems. Krieger, Malabar (1990)

    Google Scholar 

  3. Williams, R.J.: Semimartingale reflecting Brownian motions in the orthant. In: Kelly, F.P., Williams, R.J. (eds.) Stochastic Networks, IMA Volumes in Mathematics and Its Applications, vol. 71, pp. 125–137. Springer, New York (1995)

    Google Scholar 

  4. Budhiraja, A., Lee, C.: Stationary distribution convergence for generalized Jackson networks in heavy traffic. Math. Oper. Res. 34, 45–56 (2009)

    Article  Google Scholar 

  5. Gamarnik, D., Zeevi, A.: Validity of heavy traffic steady-state approximations in open queueing networks. Ann. Appl. Probab. 16(1), 56–90 (2006)

    Article  Google Scholar 

  6. Dupuis, P., Williams, R.J.: Lyapunov functions for semimartingale reflecting Brownian motions. Ann. Probab. 22, 680–702 (1994)

    Article  Google Scholar 

  7. Bramson, M.: A positive recurrent reflecting Brownian motion with divergent fluid path. Ann. Appl. Probab. 21(3), 951–986 (2011)

    Article  Google Scholar 

  8. El Kharroubi, A., Ben Tahar, A., Yaacoubi, A.: Sur la récurrence positive du mouvement brownien réflechi dans l’orthant positif de \({\bf R}^n\). Stoch. Stoch. Rep. 68, 229–253 (2000)

    Article  Google Scholar 

  9. El Kharroubi, A., Ben Tahar, A., Yaacoubi, A.: On the stability of the linear Skorohod problem in an orthant. Math. Methods Oper. Res. 56, 243–258 (2002)

    Article  Google Scholar 

  10. Bramson, Maury, Dai, J.G., Michael Harrison, J.: Positive recurrence of reflecting Brownian motion in three dimensions. Ann. Appl. Probab. 20(2), 753–783 (2010)

    Article  Google Scholar 

  11. Gamarnik, D.: On deciding stability of constrained homogeneous random walks and queueing systems. Math. Oper. Res. 27(2), 272–293 (2002)

    Article  Google Scholar 

  12. Gamarnik, D.: Computing stationary probability distribution and large deviations rates for constrained homogeneous random walks. The undecidability results. Math. Oper. Res. 27(2), 272–293 (2007)

    Article  Google Scholar 

  13. Gamarnik, D., Katz, D.: On deciding stability of queueing networks under priority scheduling policy. Ann. Appl. Probab. 19, 2008–2037 (2009)

    Article  Google Scholar 

  14. Fayolle, G., Iasnogorodski, R., Malyshev, V.A.: Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications, vol. 40. Springer, Berlin (1999)

    Book  Google Scholar 

  15. Fayolle, G., Malyshev, V.A., Menshikov, M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  16. Malyshev, V.A.: Classification of two-dimensional positive random walks and almost linear semimartingales. Dokl. Akad. Nauk SSSR 202, 526–528 (1972)

    Google Scholar 

  17. Menshikov, M.V.: Ergodicity and transience conditions for random walks in the positive octant of space. Soviet. Math. Dokl. 217, 755–758 (1974)

    Google Scholar 

  18. Dai, J.G.: On the positive Harris recurrence for multiclass queueing networks: a unified approach via fluid models. Ann. Appl. Probab. 5, 49–77 (1995)

    Article  Google Scholar 

  19. Malyshev, V.A.: Networks and dynamical systems. Adv. Appl. Probab. 25, 140–175 (1993)

    Article  Google Scholar 

  20. Sipser, M.: Introduction to the Theory of Computability. PWS, Boston (1997)

    Google Scholar 

  21. Goodman-Strauss, C.: Can’t decide? undecide!. Not. Am. Math. Soc. 57, 343–356 (2010)

    Google Scholar 

  22. Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C.H., Tsitsiklis, J.N.: Deciding stability and mortality of piecewise affine systems. Theor. Comput. Sci. 225(1–2), 687–696 (2001)

    Article  Google Scholar 

  23. Blondel, V.D., Tsitsiklis, J.N.: The boundedness of all products of a pair of matrices is undecidable. Syst. Control Lett. 41(2), 135–140 (2000)

    Article  Google Scholar 

  24. Blondel, V.D., Tsitsiklis, J.N.: A survey of computational complexity results in systems and control. Automatica 36(9), 1249–1274 (2000)

    Article  Google Scholar 

  25. Hopcroft, J., Ullman, J.: Formal Languages and Their Relation to Automata. Addison-Wesley, Boston (1969)

    Google Scholar 

  26. Rogozhin, Y.: Small universal Turing machines. Theor. Comput. Sci. 168(2), 215–240 (1996)

    Article  Google Scholar 

  27. El Kharroubi, A., Bernard, A.: Réflexions (ou régulations) de processus dans le premier “orthant” de \({\bf R}^n\). C. R. Acad. Sci. Paris Sér. I Math. 309, 371–375 (1989)

    Google Scholar 

  28. El Kharroubi, A., Bernard, A.: Régulations déterministes et stochastiques dans le premier “orthant” de \({\bf R}^n\). Stoch. Stoch. Rep. 34, 149–167 (1991)

    Article  Google Scholar 

  29. Taylor, L.M., Williams, R.J.: Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant. Probab. Theory Relat. Fields 96, 283–317 (1993)

    Article  Google Scholar 

  30. Hooper, P.: The undecidability of the Turing machine immortality problem. J. Symb. Logic 2, 219–234 (1966)

    Article  Google Scholar 

  31. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Ann. Math. 74, 437–455 (1961)

    Article  Google Scholar 

Download references

Acknowledgments

With great pleasure we acknowledge several enlightening discussions with Maury Bramson. David Gamarnik: This work was supported by NSF Grant CMMI-0726733

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gamarnik.

Additional information

Dedicated to the memory of A.V. Skorokhod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamarnik, D., Katz, D. The stability of the deterministic Skorokhod problem is undecidable. Queueing Syst 79, 221–249 (2015). https://doi.org/10.1007/s11134-014-9424-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-014-9424-8

Keywords

Mathematics Subject Classification

Navigation