Skip to main content
Log in

Dietary Polyphenols and Obesity: A Review of Polyphenol Effects on Lipid and Glucose Metabolism, Mitochondrial Homeostasis, and Starch Digestibility and Absorption

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Obesity is a major global public health concern, limiting socio-economic development and human productivity. As studies focus on finding sustainable solutions to this challenge, polyphenols have shown promising results and have become a research focus. This is mainly because of associated lower risks of side effects with their use, compared to synthetic pharmaceuticals. In this study, the anti-obesity potentials of dietary polyphenols have been reviewed. Using a narrative approach, the biological activities of polyphenols and their influence on energy metabolism and mechanisms are discussed. Specifically, their roles in insulin-dependent glucose uptake, insulin sensitivity, lipid metabolism and storage in adipocytes, starch digestibility, and regulation of mitophagy and mitogenesis in muscle cells and adipocytes, were considered. After considering the major findings of many related studies, it was confirmed that polyphenols can prevent and ameliorate obesity by fighting insulin resistance (IR) induced by pro-inflammatory cytokines, scavenging reactive oxygen species (ROS) and limiting their effects, and by regulating the expression and/or activity of key enzymes along relevant pathways. More human studies are needed to reveal more about the anti-obesity effects of dietary polyphenols and their effective doses in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

IR:

Insulin resistance

ROS:

Reactive oxygen species

EGCG:

Epigallocatechin-3-O-gallate

RSV:

Resveratrol

GA:

Gallic acid

CRC:

Curcumin

IS:

Insulin sensitivity

CR:

Caloric restriction

GLUT:

Glucose transporter

GSV:

Glucose transporter storage vesicle

NF-kB:

Nuclear factor kappa B

JNK:

C-Jun N-terminal kinase

SFA:

Saturated fatty acid

TNF α:

Tumor necrosis factor alpha

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NOX:

NADPH oxidase

IRS-1:

Insulin receptor substrate 1

PI3K:

Phosphatidylinositol-3-kinase

Akt:

Collective name of a set of three serine/threonine-specific protein kinases

NO:

Nitric oxide

eNOS:

Endothelial NO synthase

mTOR:

Mammalian target of rapamycin

HepG2:

Human liver cells

IR-HepG2:

Insulin resistant human liver cells

PEPCK:

Phosphoenolpyruvate carboxykinase

G6Pase:

Glucose-6-phosphatase

LDL:

Low density lipoprotein

HDL:

High density lipoprotein

RGPD:

Red grape pomace drink

AMPK:

AMP-activated protein kinase

PTB1B:

Protein tyrosine phosphatase 1B

LKB1:

Liver kinase B1

CaMKK:

Calcium/calmodulin-dependent protein kinase kinase

RA:

Rosmarinic acid

IGF-1:

Insulin-like growth factor 1

SREBP:

Sterol regulatory-element binding proteins

PPAR:

Peroxisome proliferator-activated receptors

G3P:

Glyceraldehyde 3-phosphate

GPDH:

Glycerol-3-phosphate dehydrogenase

HMG-CoA:

3-Hydroxy-3-methylglutaryl coenzyme A

FABP4:

Fatty acid binding protein 4

LXR-α:

Liver X receptor alpha

PGC-1:

Peroxisome proliferator-activated receptor-gamma coactivator-1alpha

Ucpl:

Uncoupling protein 1

CIDEA:

Cell death-inducing DNA fragmentation factor alpha-like effector A

Tbx1:

Tata-box protein 1

Cd137:

Tumor necrosis factor receptor superfamily member 9

BAT:

Beige adipose tissue

iWAT:

Inguinal white adipose tissues

SIRT1:

Sirtuin 1

SCD 1:

Stearoyl-Coenzyme A desaturase 1

ATP:

Adenosine triphosphate

NAD:

Nicotinamide adenine dinucleotide

FOXO3:

Forkhead box O3

UNC51:

Autophagy-related serine/threonine kinase

ULK1:

UNC-51-like kinase 1

PINK 1:

PTEN induced putative kinase 1

PTEN:

A tumor suppressor phosphatase and tensin homolog

ERK2:

Mitogen-activated protein kinase 1 (MAPK1)

NAMPT:

Nicotinamide phosphoribosyltransferase

PKD:

Protein kinase D

References

  1. Fryar CD, Carroll MD, Afful J (2020) Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. Health E-Stats. NCHS Publications and Information Products, Atlanta, pp 1–7

    Google Scholar 

  2. Krzysztoszek J, Laudanska-Krzeminska I, Bronikowski M (2019) Assessment of epidemiological obesity among adults in EU countries. Ann Agric Environ Med 26(2):341–349. https://doi.org/10.26444/aaem/97226

    Article  PubMed  Google Scholar 

  3. Price AJ, Crampin AC, Amberbir A, Kayuni-Chihana N, Musicha C, Tafatatha T, Branson K, Lawlor DA, Mwaiyeghele E, Nkhwazi L, Smeeth L (2018) Prevalence of obesity, hypertension, and diabetes, and cascade of care in sub-Saharan Africa: a cross-sectional, population-based study in rural and urban Malawi. Lancet Diabetes Endocrinol 6(3):208–222. https://doi.org/10.1016/S2213-8587(17)30432-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hojjat TA (2021) Economics of obesity: poverty, income inequality, and health, 2nd edn. Springer Cham, Switzerland, pp 1–16. https://doi.org/10.1007/978-3-030-78487-4

    Book  Google Scholar 

  5. Corrêa TA, Rogero MM (2019) Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrients 59:150–157. https://doi.org/10.1016/j.nut.2018.08.010

    Article  CAS  Google Scholar 

  6. Hughes LA, Arts IC, Ambergen T, Brants HA, Dagnelie PC, Goldbohm RA, van den Brant PA, Weijenberg MP (2008) Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands Cohort Study. Am J Clin Nutr 88(5):1341–1352. https://doi.org/10.3945/ajcn.2008.26058

    Article  CAS  PubMed  Google Scholar 

  7. Grosso G, Stepaniak U, Micek A, Topor-Mądry R, Pikhart H, Szafraniec K, Pająk A (2015) Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study. Eur J Nutr 54(7):1129–1137. https://doi.org/10.1007/s00394-014-0789-6

    Article  CAS  PubMed  Google Scholar 

  8. Tanabe H, Pervin M, Goto S, Isemura M, Nakamura Y (2017) Beneficial effects of plant polyphenols on obesity. Obes Control Ther 4:1–16. https://doi.org/10.15226/2374-8354/4/3/00142

    Article  Google Scholar 

  9. Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M (2021) The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules 26(2):453. https://doi.org/10.3390/2Fmolecules26020453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suzuki T, Pervin M, Goto S, Isemura M, Nakamura Y (2016) Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules 21(10):1305. https://doi.org/10.3390/molecules21101305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang P, Li D, Ke W, Liang D, Hu X, Chen F (2020) Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes 44(1):213–225. https://doi.org/10.1038/s41366-019-0332-1

    Article  CAS  Google Scholar 

  12. Giovinazzo G, Grieco F (2015) Functional properties of grape and wine polyphenols. Plant Foods Hum Nutr 70(4):454–462. https://doi.org/10.1007/s11130-015-0518-1

    Article  CAS  PubMed  Google Scholar 

  13. Rocchetti G, Giuberti G, Gallo A, Bernardi J, Marocco A, Lucini L (2018) Effect of dietary polyphenols on the in vitro starch digestibility of pigmented maize varieties under cooking conditions. Food Res Int 108:183–191

    Article  CAS  PubMed  Google Scholar 

  14. Cipolla-Neto J, Amaral F, Afeche S, Tan D, Reiter R (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56(4):371–381. https://doi.org/10.1111/jpi.12137

    Article  CAS  PubMed  Google Scholar 

  15. Ramírez-Venegas G, Ita-Pérez D, Díaz-Muñoz M, Méndez I, García-Gasca T, Ahumada-Solórzano M, Zambrano-Estrada X, Vázquez-Martínez O, Guzmán-Maldonado H, Luna-Moreno D (2021) Supplementation with Phaseolus vulgaris leaves improves metabolic alterations induced by high-fat/fructose diet in rats under time-restricted feeding. Plant Foods Hum Nutr 76(3):297–303. https://doi.org/10.1007/s11130-021-00904-9

    Article  CAS  PubMed  Google Scholar 

  16. Satoh T (2014) Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci 15(10):18677–18692. https://doi.org/10.3390/ijms151018677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13(3):195–203. https://doi.org/10.1038/nrm3290

    Article  CAS  PubMed  Google Scholar 

  18. Furtado LM, Somwar R, Sweeney G, Niu W, Klip A (2002) Activation of the glucose transporter GLUT4 by insulin. Biochem Cell Biol 80(5):569–578. https://doi.org/10.1139/o02-156

    Article  CAS  PubMed  Google Scholar 

  19. Wei Y, Chen K, Whaley-Connell AT, Stump CS, Ibdah JA, Sowers JR (2008) Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 294(3):R673–R680. https://doi.org/10.1152/ajpregu.00561.2007

    Article  CAS  PubMed  Google Scholar 

  20. Williamson G, Sheedy K (2020) Effects of polyphenols on insulin resistance. Nutrients 12(10):3135. https://doi.org/10.3390/nu12103135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vilahur G, Padró T, Casaní L, Mendieta G, López JA, Streitenberger S, Badimon L (2015) Polyphenol-enriched diet prevents coronary endothelial dysfunction by activating the Akt/eNOS pathway. Rev Esp Cardiol 68(3):216–225. https://doi.org/10.1016/j.rec.2014.04.021

    Article  PubMed  Google Scholar 

  22. Soto-Covasich J, Reyes-Farias M, Torres RF, Vásquez K, Duarte L, Quezada J, Jimenez P, Pino MT, Garcia-Nannig L, Mercado L, Garcia-Diaz DF (2020) A polyphenol-rich Calafate (Berberis microphylla) extract rescues glucose tolerance in mice fed with cafeteria diet. J Funct Foods 67:103856. https://doi.org/10.1016/j.jff.2020.103856

    Article  CAS  Google Scholar 

  23. Xia T, Duan W, Zhang Z, Fang B, Zhang B, Xu B, de la Cruz CBV, El-Seedi H, Simal-Gandara J, Wang S, Wang M (2021) Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chem 335:127513. https://doi.org/10.1016/j.foodchem.2020.127513

    Article  CAS  PubMed  Google Scholar 

  24. Costabile G, Vitale M, Luongo D, Naviglio D, Vetrani C, Ciciola P, Tura A, Castello F, Mena P, Del Rio D, Capaldo B (2019) Grape pomace polyphenols improve insulin response to a standard meal in healthy individuals: a pilot study. Clin Nutr 38(6):2727–2734. https://doi.org/10.1016/j.clnu.2018.11.028

    Article  CAS  PubMed  Google Scholar 

  25. Vlavcheski F, Naimi M, Murphy B, Hudlicky T, Tsiani E (2017) Rosmarinic acid, a rosemary extract polyphenol, increases skeletal muscle cell glucose uptake and activates AMPK. Molecules 22(10):1669. https://doi.org/10.3390/2Fmolecules22101669

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tsuda S, Egawa T, Ma X, Oshima R, Kurogi E, Hayashi T (2012) Coffee polyphenol caffeic acid but not chlorogenic acid increases 5′ AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. J Nutr Biochem 23(11):1403–1409. https://doi.org/10.1016/j.jnutbio.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  27. Lee S-H, Jeon Y-J (2013) Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86:129–136. https://doi.org/10.1016/j.fitote.2013.02.013

    Article  CAS  PubMed  Google Scholar 

  28. Kk IM, Issac A, Ninan E, Kuttan R, Maliakel B (2014) Enhanced anti-diabetic activity of polyphenol-rich de-coumarinated extracts of Cinnamomum cassia. J Funct Foods 10:54–64. https://doi.org/10.1016/j.jff.2014.05.008

    Article  CAS  Google Scholar 

  29. Hwang J-T, Kwon DY, Yoon SH (2009) AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. N Biotechnol 26(1–2):17–22. https://doi.org/10.1016/j.nbt.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  30. Matacchione G, Gurău F, Baldoni S, Prattichizzo F, Silvestrini A, Giuliani A, Pugnaloni A, Espinosa E, Amenta F, Bonafè M, Procopio AD (2020) Pleiotropic effects of polyphenols on glucose and lipid metabolism: focus on clinical trials. Ageing Res Rev 61:101074. https://doi.org/10.1016/j.arr.2020.101074

  31. Chung E, Campise SN, Joiner HE, Tomison MD, Kaur G, Dufour JM, Cole L, Ramalingam L, Moustaid-Moussa N, Shen CL (2019) Effect of annatto-extracted tocotrienols and green tea polyphenols on glucose homeostasis and skeletal muscle metabolism in obese male mice. J Nutr Biochem 67:36–43. https://doi.org/10.1016/j.jnutbio.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  32. Plaza M, Batista ÂG, Cazarin CBB, Sandahl M, Turner C, Östman E, Júnior MRM (2016) Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chem 211:185–197. https://doi.org/10.1016/j.foodchem.2016.04.142

  33. Lee JH, Lee SY, Kim B, Seo WD, Jia Y, Wu C, Jun HJ, Lee SJ (2015) Barley sprout extract containing policosanols and polyphenols regulate AMPK, SREBP2 and ACAT2 activity and cholesterol and glucose metabolism in vitro and in vivo. Food Res Int 72:174–183. https://doi.org/10.1016/j.foodres.2015.03.041

  34. Cheng DM, Pogrebnyak N, Kuhn P, Poulev A, Waterman C, Rojas-Silva P, Johnson WD, Raskin I (2014) Polyphenol-rich Rutgers Scarlet Lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese C57BL/6 mice. Nutrition 30(7–8):S52–S58. https://doi.org/10.1016/j.nut.2014.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li D, Yang Y, Sun L, Fang Z, Chen L, Zhao P, Wang Z, Guo Y (2020) Effect of young apple (Malus domestica Borkh. cv. Red Fuji) polyphenols on alleviating insulin resistance. Food Biosci 36:100637. https://doi.org/10.1016/j.fbio.2020.100637

  36. Mokashi P, Khanna A, Pandita N (2017) Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed Pharmacother 90:268–277. https://doi.org/10.1016/j.biopha.2017.03.047

  37. Ooi DJ, Azmi NH, Imam MU, Alitheen NB, Ismail M (2018) Curculigoside and polyphenol-rich ethyl acetate fraction of Molineria latifolia rhizome improved glucose uptake via potential mTOR/AKT activated GLUT4 translocation. J Food Drug Anal 26(4):1253–1264. https://doi.org/10.1016/j.jfda.2018.03.003

  38. Zygmunt K, Faubert B, MacNeil J, Tsiani E (2010) Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 398(2):178–183. https://doi.org/10.1016/j.bbrc.2010.06.048

    Article  CAS  PubMed  Google Scholar 

  39. Ma J, Zheng Y, Tang W, Yan W, Nie H, Fang J, Liu G (2020) Dietary polyphenols in lipid metabolism: a role of gut microbiome. Anim Nutr 6(4):404–409. https://doi.org/10.1016/j.aninu.2020.08.002

  40. Les F, Arbonés-Mainar JM, Valero MS, López V (2018) Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J Ethnopharmacol 220:67–74. https://doi.org/10.1016/j.jep.2018.03.029

  41. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. https://doi.org/10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. https://doi.org/10.1038/nature07813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rupasinghe HV, Sekhon-Loodu S, Mantso T, Panayiotidis MI (2016) Phytochemicals in regulating fatty acid β-oxidation: potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol Ther 165:153–163. https://doi.org/10.1016/j.pharmthera.2016.06.005

  44. Tamura Y, Tomiya S, Takegaki J, Kouzaki K, Tsutaki A, Nakazato K (2020) Apple polyphenols induce browning of white adipose tissue. J Nutr Biochem 77:108299. https://doi.org/10.1016/j.jnutbio.2019.108299

    Article  CAS  PubMed  Google Scholar 

  45. Ali F, Ismail A, Esa NM, Pei CP, Kersten S (2015) Hepatic genome-wide expression of lipid metabolism in diet-induced obesity rats treated with cocoa polyphenols. J Funct Foods 17:969–978. https://doi.org/10.1016/j.jff.2015.06.047

    Article  CAS  Google Scholar 

  46. Yoshino M, Haneda M, Naruse M, Htay HH, Iwata S, Tsubouchi R, Murakami K (2002) Prooxidant action of gallic acid compounds: copper-dependent strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in DNA. Toxicol In Vitro 16(6):705–709. https://doi.org/10.1016/S0887-2333(02)00061-9

    Article  CAS  PubMed  Google Scholar 

  47. Zou T, Chen D, Yang Q, Wang B, Zhu MJ, Nathanielsz PW, Du M (2017) Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol 595(5):1547–1562. https://doi.org/10.1113/jp273478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han X, Guo J, You Y, Yin M, Liang J, Ren C, Zhan J, Huang W (2018) Vanillic acid activates thermogenesis in brown and white adipose tissue. Food Funct 9(8):4366–4375. https://doi.org/10.1039/c8fo00978c

    Article  CAS  PubMed  Google Scholar 

  49. Chou Y-C, Ho C-T, Pan M-H (2018) Immature Citrus reticulata extract promotes browning of beige adipocytes in high-fat diet-induced C57BL/6 mice. J Agric Food Chem 66(37):9697–9703. https://doi.org/10.1021/acs.jafc.8b02719

  50. Anhê FF, Choi B, Dyck J, Schertzer J, Marette A (2019) Host–microbe interplay in the cardiometabolic benefits of dietary polyphenols. Trends Endocrinol Metab 30(6):384–395. https://doi.org/10.1016/j.tem.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  51. Aires V, Labbé J, Deckert V, Pais de Barros JP, Boidot R, Haumont M, Maquart G, Le Guern N, Masson D, Prost-Camus E, Prost M (2019) Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract. Sci Rep 9(1):1–16. https://doi.org/10.1038/2Fs41598-019-45600-6

    Article  Google Scholar 

  52. Ishida N, Iizuka M, Kataoka K, Okazaki M, Shiraishi K, Yagi Y, Jobu K, Yokota J, Oishi M, Moriyama H, Shimamura T (2018) Improvement of blood lipid profiles by Goishi tea polyphenols in a randomised, double-blind, placebo-controlled clinical study. Int J Food Sci Nutr 69(5):598–607. https://doi.org/10.1080/09637486.2017.1386629

    Article  CAS  PubMed  Google Scholar 

  53. Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, Lv J, Cao C, Chen T, Zhuang S, Hou X (2018) Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci 115(26):E5896–E5905. https://doi.org/10.1073/2Fpnas.1801745115

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liou C-J, Wei C-H, Chen Y-L, Cheng C-Y, Wang C-L, Huang W-C (2018) Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice. Cell Physiol Biochem 49(5):1870–1884. https://doi.org/10.1159/000493650

  55. Ibitoye OB, Ajiboye TO (2018) Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch Physiol Biochem 124(5):410–417. https://doi.org/10.1080/13813455.2017.1415938

    Article  CAS  PubMed  Google Scholar 

  56. Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P (2016) Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin Exp Pharmacol Physiol 43(2):242–250. https://doi.org/10.1111/1440-1681.12514

    Article  CAS  PubMed  Google Scholar 

  57. Liu L, Yasen M, Tang D, Ye J, Aisa HA, Xin X (2018) Polyphenol-enriched extract of Rosa rugosa Thunb regulates lipid metabolism in diabetic rats by activation of AMPK pathway. Biomed Pharmacother 100:29–35. https://doi.org/10.1016/j.biopha.2018.01.143

    Article  CAS  PubMed  Google Scholar 

  58. Tenore GC, Calabrese G, Stiuso P, Ritieni A, Giannetti D, Novellino E (2014) Effects of Annurca apple polyphenols on lipid metabolism in HepG2 cell lines: a source of nutraceuticals potentially indicated for the metabolic syndrome. Food Res Int 63:252–257. https://doi.org/10.1016/j.foodres.2014.05.024

  59. Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, Ohtake Y (2007) Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem 55(11):4604–4609. https://doi.org/10.1021/jf070569k

    Article  CAS  PubMed  Google Scholar 

  60. Tenore GC, Campiglia P, Stiuso P, Ritieni A, Novellino E (2013) Nutraceutical potential of polyphenolic fractions from Annurca apple (M. pumila Miller cv Annurca). Food Chem 140(4):614–622. https://doi.org/10.1016/j.foodchem.2012.10.112

  61. Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12(1):43. https://doi.org/10.1186/2F2251-6581-12-43

    Article  PubMed  PubMed Central  Google Scholar 

  62. Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188. https://doi.org/10.1016/j.exger.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  63. Haas RH (2019) Mitochondrial dysfunction in aging and diseases of aging. Biology 8(2):48. https://doi.org/10.3390/2Fbiology8020048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chappell NR, Zhou B, Hosseinzadeh P, Schutt A, Gibbons WE, Blesson CS (2021) Hyperandrogenemia alters mitochondrial structure and function in the oocytes of obese mouse with polycystic ovary syndrome. Fertil Steril Sci 2(1):101–112. https://doi.org/10.1016/j.xfss.2020.12.001

    Article  Google Scholar 

  65. Caldwell CC, Petzinger GM, Jakowec MW, Cadenas E (2020) Treadmill exercise rescues mitochondrial function and motor behavior in the CAG140 knock-in mouse model of Huntington’s disease. Chem Biol Interact 315:108907. https://doi.org/10.1016/j.cbi.2019.108907

    Article  CAS  PubMed  Google Scholar 

  66. Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, Kornwoski R, Aravot D, Abraham NG, Arad M, Hochhauser E (2018) Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α.’ Cardiovasc Diabetol 17(1):1–12. https://doi.org/10.1186/s12933-018-0754-4

  67. Davinelli S, De Stefani D, De Vivo I, Scapagnini G (2020) Polyphenols as caloric restriction mimetics regulating mitochondrial biogenesis and mitophagy. Trends Endocrinol Metab 31(7):536–550. https://doi.org/10.1016/j.tem.2020.02.011

    Article  CAS  PubMed  Google Scholar 

  68. Das S, Mitrovsky G, Vasanthi HR, Das DK (2014) Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid Med Cell Longev 2014:345105. https://doi.org/10.1155/2F2014/2F345105

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rocchetti G, Giuberti G, Busconi M, Marocco A, Trevisan M, Lucini L (2020) Pigmented sorghum polyphenols as potential inhibitors of starch digestibility: an in vitro study combining starch digestion and untargeted metabolomics. Food Chem 312:126077. https://doi.org/10.1016/j.foodchem.2019.126077

  70. Yu X, Xu Y, Zhang S, Sun J, Liu P, Xiao L, Tang Y, Liu L, Yao P (2016) Quercetin attenuates chronic ethanol-induced hepatic mitochondrial damage through enhanced mitophagy. Nutrients 8(1):27. https://doi.org/10.3390/nu8010027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501(1):79–90. https://doi.org/10.1016/j.abb.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Caito S, Rajendrasozhan S, Cook S, Chung S, Yao H, Friedman AE, Brookes PS, Rahman I (2010) SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J 24(9):3145–3159. https://doi.org/10.1096/2Ffj.09-151308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun L, Miao M (2020) Dietary polyphenols modulate starch digestion and glycaemic level: a review. Crit Rev Food Sci Nutr 60(4):541–555. https://doi.org/10.1080/10408398.2018.1544883

  74. Kan L, Oliviero T, Verkerk R, Fogliano V, Capuano E (2020) Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. J Funct Foods 68:103924. https://doi.org/10.1016/j.jff.2020.103924

    Article  CAS  Google Scholar 

  75. Zhao B, Wang B, Zheng B, Chen L, Guo Z (2019) Effects and mechanism of high-pressure homogenization on the characterization and digestion behavior of lotus seed starch–green tea polyphenol complexes. J Funct Foods 57:173–181. https://doi.org/10.1016/j.jff.2019.04.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Courage Sedem Dzah conceptualized the study, drafted some sections, did the editing of the manuscript and finalized the paper. Emmanuel Letsyo and John Dzikunoo also drafted some sections of the paper and helped with proofreading, David Asante-Donyinah and Zeenatu Sugloh Adams contributed by drafting some sections of the paper. All authors read and approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Courage Sedem Dzah.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Ethics approval not applicable as no human tissues nor human subjects were used during the current study. This study only reviewed available literature.

Consent to Participate

Not applicable as no human participants were used in the current study.

Consent for Publication

All authors have agreed to publish this paper without any reservations whatsoever.

Conflicts of Interest Statement

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzah, C.S., Asante-Donyinah, D., Letsyo, E. et al. Dietary Polyphenols and Obesity: A Review of Polyphenol Effects on Lipid and Glucose Metabolism, Mitochondrial Homeostasis, and Starch Digestibility and Absorption. Plant Foods Hum Nutr 78, 1–12 (2023). https://doi.org/10.1007/s11130-022-01034-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-01034-6

Keywords

Navigation