Skip to main content

Advertisement

Log in

New Insights of Turmeric Extract-Loaded PLGA Nanoparticles: Development, Characterization and In Vitro Evaluation of Antioxidant Activity

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Here, we presented new insights of the development of poly(lactic-co-glycolic acid) nanoparticles containing turmeric compounds (turmeric-PLGA-NPs) using emulsion-solvent evaporation method. The nanoparticulate system was characterized by size, zeta potential, morphology, release profile, partition parameter, stability and encapsulation efficiency (%EE). Antioxidant activity studies were also evaluated. The Korsmeyer-Peppas model (Mt/M vs. t) was used to determine the release mechanisms of the studied system. Our results demonstrated the emulsion-solvent evaporation method was shown advantageous for producing turmeric-PLGA-NPs in the range of 145 nm with high homogeneity in size distribution, zeta potential of −21.8 mV and %EE about 72%. Nanoparticles were stable over a period of one month. In vitro study showed a release of curcumin governed by diffusion and relaxation of the polymeric matrix. The partition parameter of the extract in relation to blank-PLGA-NPs was 0.111 ± 0.008 M−1, indicating a low affinity of curcumin for the polymer matrix. Antioxidant ability of the turmeric-PLGA-NPs in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) was inferior to free turmeric extract and showed a concentration and time-dependent profile. The study concluded that PLGA nanoparticles are potential carriers for turmeric extract delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Salehi B, Stojanović-Radić Z, Matejić J, Sharifi-Rad M, Kumar NVA, Martins N, Sharifi-Rad J (2019) The therapeutic potential of curcumin: a review of clinical trials. Eur J Med Chem 163:527–545. https://doi.org/10.1016/j.ejmech.2018.12.016

    Article  CAS  Google Scholar 

  2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. https://doi.org/10.1021/mp700113r

    Article  CAS  PubMed  Google Scholar 

  3. Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10. https://doi.org/10.1186/1472-6882-6-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Santos PDF, Francisco CRL, Coqueiro A, Leimann FV, Pinela J, Calhelha RC, Ineu RP, Ferreira ICFR, Bona E, Gonçalves OH (2019) The nanoencapsulation of curcuminoids extracted from Curcuma longa L and an evaluation of their cytotoxic, enzymatic, antioxidant and anti-inflammatory activities. Food Funct 10:573–582. https://doi.org/10.1039/c8fo02431f

    Article  CAS  PubMed  Google Scholar 

  5. Sarika PR, Nirmala RJ (2016) Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater Sci Eng C 65:331–337. https://doi.org/10.1016/j.msec.2016.04.044

    Article  CAS  Google Scholar 

  6. Nieman DC, Cialdella-Kam L, Knab AM, Shanely RA (2012) Influence of red pepper spice and turmeric on inflammation and oxidative stress biomarkers in overweight females: a metabolomics approach. Plant Foods Hum Nutr 67:415–421. https://doi.org/10.1007/s11130-012-0325-x

    Article  CAS  PubMed  Google Scholar 

  7. Ubeyitogullari A, Ciftci ON (2019) A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin’s bioaccessibility. Sci Rep 9:19112. https://doi.org/10.1038/s41598-019-55619-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stanić Z (2017) Curcumin, a compound from natural sources, a true scientific challenge – a review. Plant Foods Hum Nutr 72:1–12. https://doi.org/10.1007/s11130-016-0590-1

    Article  CAS  PubMed  Google Scholar 

  9. Nagahama K, Utsumi T, Kumano T, Maekawa S, Oyama N, Kawakami J (2016) Discovery of a new function of curcumin which enhances its anticancer therapeutic potency. Sci Rep 6:30962. https://doi.org/10.1038/srep30962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu Y, Sarkar P, Bhunia AK, Yao Y (2016) Delivery systems of antimicrobial compounds to food. Trends Food Sci Technol 57:165–177. https://doi.org/10.1016/j.tifs.2016.09.013

    Article  CAS  Google Scholar 

  11. Weiss J, Decker EA, McClements DJ, Kristbergsson K, Helgason T, Awad T (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3:146–154. https://doi.org/10.1007/s11483-008-9065-8

    Article  Google Scholar 

  12. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004

    Article  CAS  Google Scholar 

  13. Park SJ, Garcia CV, Shin GH, Kim JT (2018) Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system. Food Chem 251:51–57. https://doi.org/10.1016/j.foodchem.2018.01.071

    Article  CAS  PubMed  Google Scholar 

  14. Lima IA, Khalil NM, Tominaga TT, Lechanteur A, Sarmento B, Mainardes RM (2018) Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artif Cells Nanomed Biotechnol 46(sup2):S993–S1002. https://doi.org/10.1080/21691401.2018.1477788

    Article  CAS  Google Scholar 

  15. Khalil NM, Nascimento TCF, Casa DM, Dalmolin LF, Mattos AC, Hoss I, Romano MA, Mainardes RM (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B 101:353–360. https://doi.org/10.1016/j.colsurfb.2012.06.024

    Article  CAS  Google Scholar 

  16. Zhang L, Kosaraju SL (2007) Biopolymeric delivery system for controlled release of polyphenolic antioxidants. Eur Polym J 43:2956–2966. https://doi.org/10.1016/j.eurpolymj.2007.04.033

    Article  CAS  Google Scholar 

  17. Pietra RCCS, Cruz RC, Melo CN, Rodrigues LB, Santos PC, Bretz GPM, Soares BM, Sousa GR, Ferreira MVL, Cisalpino PS, Magalhães PP, Farias LM, Pinotti M (2017) Evaluation of polymeric PLGA nanoparticles conjugated to curcumin for use in aPDT. Braz J Pharm Sci 53:e16043. https://doi.org/10.1590/s2175-97902017000216043

    Article  CAS  Google Scholar 

  18. Stolnik S, Illum L, Davis SS (2012) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 64:290–301. https://doi.org/10.1016/j.addr.2012.09.029

    Article  Google Scholar 

  19. Mosqueira VCF, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, Barratt G (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967–2979. https://doi.org/10.1016/S0142-9612(01)00043-6

    Article  CAS  PubMed  Google Scholar 

  20. Punfa W, Yodkeeree S, Pitchakarn P, Ampasavate C, Limtrakul P (2012) Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sin 33:823–831. https://doi.org/10.1038/aps.2012.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327. https://doi.org/10.1016/S1359-0286(02)00117-1

    Article  CAS  Google Scholar 

  22. Mishra PR, Al Shaal L, Müller RH, Keck CM (2009) Production and characterization of hesperetin nanosuspensions for dermal delivery. Int J Pharm 371:182–189. https://doi.org/10.1016/j.ijpharm.2008.12.030

    Article  CAS  PubMed  Google Scholar 

  23. Yang R, Shim WS, Cui FD, Cheng G, Han X, Jin QR, Kim DD, Chung SJ, Shim CK (2009) Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm 371:142–147. https://doi.org/10.1016/j.ijpharm.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  24. Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607. https://doi.org/10.1016/j.biomaterials.2007.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376. https://doi.org/10.1021/es051043o

    Article  CAS  PubMed  Google Scholar 

  26. Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 190:75–81. https://doi.org/10.1016/j.jconrel.2014.06.041

    Article  CAS  PubMed  Google Scholar 

  27. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  28. Silva RTC, Dalmolin LF, Moreto JA, Oliveira CG, Machado AEH, Lopez RFV, Maia PIS (2020) Development of gold(III) thiosemicarbazonate complex–loaded PLGA nanoparticles: characterization and sustained release studies. J Nanopart Res 22:339. https://doi.org/10.1007/s11051-020-05064-6

    Article  CAS  Google Scholar 

  29. Gracia E, García MT, Rodríguez JF, Lucas A, Gracia I (2018) Improvement of PLGA loading and release of curcumin by supercritical technology. J Supercrit Fluids 141:60–67. https://doi.org/10.1016/j.supflu.2018.03.019

    Article  CAS  Google Scholar 

  30. Rezaei A, Nasirpour A (2019) Evaluation of release kinetics and mechanisms of curcumin and curcumin-β-cyclodextrin inclusion complex incorporated in electrospun almond gum/PVA nanofibers in simulated saliva and simulated gastrointestinal conditions. BioNanoScience 9:438–445. https://doi.org/10.1007/s12668-019-00620-4

    Article  Google Scholar 

  31. Leite NB, Martins DB, Fazzani VE, Vieira MR, Cabrera MPS (2018) Cholesterol modulates curcumin partitioning and membrane effects. Biochim Biophys Acta Biomembr 1860:2320–2328. https://doi.org/10.1016/j.bbamem.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  32. Liu D, Schwimer J, Liu Z, Woltering EA, Greenway FL (2008) Antiangiogenic effect of curcumin in pure versus in extract forms. Pharm Biol 46:677–682. https://doi.org/10.1080/13880200802215826

    Article  CAS  Google Scholar 

  33. Martínez-Ballesta M, Gil-Izquierdo A, García-Viguera C, Domínguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “smart-foods” for health. Foods 7:72. https://doi.org/10.3390/foods7050072

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Dr. Pedro Ivo da Silva Maia for technical support and the Multiuser Laboratory of the Chemistry Institute at the Federal University of Uberlândia (UFU) for providing the equipment and technical support for analysis involving scanning electron microscope (SEM).

Funding

This work was supported by National Council of Technological and Scientific Development (CNPq-Brazil) (Grants: 115785/2020–5, 402142/2016–0 and 303659/2019–0), Federal University of Triângulo Mineiro (UFTM) and Research Supporting Foundation of Minas Gerais State (FAPEMIG) (Grant: APQ-02276-18).

Author information

Authors and Affiliations

Authors

Contributions

Kélin Schwarz - Project administration, supervision, formal analysis and write-up; Jéferson A. Moreto - Supervision, formal analysis and write-up; Renata Fonseca Vianna Lopez - Formal analysis; Luciana Facco Dalmolin - Investigation; Camila Maria Gonzales - Investigation; Kátia Aparecida da Silva – Investigation; Natália Bueno Leite Slade – Investigation and write-up.

Corresponding author

Correspondence to Kélin Schwarz.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzales, C.M., Dalmolin, L.F., da Silva, K.A. et al. New Insights of Turmeric Extract-Loaded PLGA Nanoparticles: Development, Characterization and In Vitro Evaluation of Antioxidant Activity. Plant Foods Hum Nutr 76, 507–515 (2021). https://doi.org/10.1007/s11130-021-00929-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00929-0

Keywords

Navigation