Skip to main content
Log in

Impact of Foam-Mat Drying on Plant-Based Foods Bioactive Compounds: a Review

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Plant-based foods are recognized by their remarkable content of bioactive compounds. In an attempt to increase plant-based foods shelf-life, technologies like drying can be used. Foam-mat drying is a mild drying technology that removes water, usually by using hot air, from a foam obtained by the whipping of a liquid or semi-liquid food added with a foaming agent. There are several reports on the use of foam-mat drying for extending plant-based foods shelf-life, including reports on the effect of drying on their bioactive compounds. Therefore, this study aimed at reviewing the literature on the impact of foam-mat drying on plant-based foods bioactive compounds published in the last 10 years. Results show that short foam-mat drying time is beneficial to bioactive compounds retention. In addition, hot air temperature between 40–65 °C, foam thickness between 0.2 and 1 cm and the use of egg white as one of the foaming agents leads to high bioactive retention. Egg white is also the most used foaming agent. Regarding the mathematical models used for fitting the foam-mat drying kinetics, the Page model was shown as the most proper model. Foaming agent concentration is a delicate parameter, as its increase in foam formulation may beneficially enhance drying rates but, at the same time, it dilutes bioactive compounds and may cause their loss by oxidation. In conclusion, foam-mat drying stands out as a suitable technology for producing food powders with high bioactive retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Mujumdar AS (2014) Handbook of industrial drying. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Falade KO, Adeyanju KI, Uzo-Peters PI (2003) Foam-mat drying of cowpea (Vigna unguiculata) using glyceryl monostearate and egg albumin as foaming agents. Eur Food Res Technol 217:486–491. https://doi.org/10.1007/s00217-003-0775-3

    Article  CAS  Google Scholar 

  3. Kandasamy P, Varadharaju N, Kalemullah S, Maladhi D (2014) Optimization of process parameters for foam-mat drying of papaya pulp. J Food Sci Technol 51:2526–2534. https://doi.org/10.1007/s13197-012-0812-y

    Article  CAS  PubMed  Google Scholar 

  4. Olopade AA, Akingbala JA, Oguntunde AO, Falade KO (2003) Effect of processing method on the quality of cowpea (Vigna unguiculata) flour for akara preparation. Plant Foods Hum Nutr 58:1–10. https://doi-org.ez109.periodicos.capes.gov.br/10.1023/B:QUAL.0000040353.90798.a2

  5. Branco IG, Kikuchi TT, Argandoña EJS, Moraes ICF, Haminiuk CWI (2016) Drying kinetics and quality of uvaia (Hexachlamys edulis (O. Berg)) powder obtained by foam-mat drying. Int J Food Sci Technol 51:1703–1710. https://doi.org/10.1111/ijfs.13145

    Article  CAS  Google Scholar 

  6. Salahi MR, Mohebbi M, Taghizadeh M (2017) Development of cantaloupe (Cucumis melo) pulp powder using foam-mat drying method: effects of drying conditions on microstructural of mat and physicochemical properties of powder. Dry Technol 35:1897–1908. https://doi.org/10.1080/07373937.2017.1291518

    Article  CAS  Google Scholar 

  7. Franco TS, Perussello CA, Ellendersen LSN, Masson ML (2015) Foam mat drying of yacon juice: experimental analysis and computer simulation. J Food Eng 158:48–57. https://doi.org/10.1016/j.jfoodeng.2015.02.030

    Article  CAS  Google Scholar 

  8. Baptestini FM, Corrêa PC, Zeymer JS, Zaidan IR, Bustos-Vanegas JD, Baptestini GCF (2018) Physical-chemical characterization of powder soursop obtained by foam-mat drying. Biosci J 34:141–150. https://doi.org/10.14393/BJ-v34n6a2018-39801

    Article  Google Scholar 

  9. Samyor D, Deka SC, Das AB (2020) Physicochemical and phytochemical properties of foam mat dried passion fruit (Passiflora edulis Sims) powder and comparison with fruit pulp. J Food Sci Technol 58:787–796.  https://doi.org/10.1007/s13197-020-04596-y

    Article  PubMed  Google Scholar 

  10. Ayetigbo O, Latif S, Abass A, Müller J (2019) Preparation, optimization and characterization of foam from white-flesh and yellow-flesh cassava (Manihot esculenta) for powder production. Food Hydrocoll 97:105205. https://doi.org/10.1016/j.foodhyd.2019.105205

    Article  CAS  Google Scholar 

  11. Tavares IMC, Castilhos MBM, Mauro MA, Ramos AM, Souza RT, Gómez-Alonso S et al (2019) BRS Violeta (BRS Rúbea × IAC 1398–21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chem 298:124971. https://doi.org/10.1016/j.foodchem.2019.124971

    Article  CAS  Google Scholar 

  12. Benković M, Pižeta M, Tušek AJ, Jurina T, Kljusurić JG, Valinger D (2019) Optimization of the foam mat drying process for production of cocoa powder enriched with peppermint extract. LWT-Food Sci Technol 115:108440. https://doi.org/10.1016/j.lwt.2019.108440

    Article  CAS  Google Scholar 

  13. Darniadi S, Ifie I, Ho P, Murray BS (2019) Evaluation of total monomeric anthocyanin, total phenolic content and individual anthocyanins of foam-mat freeze-dried and spray-dried blueberry powder. J Food Meas Charact 13:1599–1606. https://doi.org/10.1007/s11694-019-00076-w

    Article  Google Scholar 

  14. Varhan E, Elmas F, Koç M (2019) Foam mat drying of fig fruit: optimization of foam composition and physicochemical properties of fig powder. J Food Process Eng 42:1–13. https://doi.org/10.1111/jfpe.13022

    Article  CAS  Google Scholar 

  15. Vimercati WC, Macedo LL, Araújo da S C, Teixeira LJQ, Saraiva SH (2019) Efeito da temperatura na cinética de secagem em leito de espuma e na degradação de antocianina em morango. Braz J Food Technol 22:1–12. https://doi.org/10.1590/1981-6723.22118

    Article  Google Scholar 

  16. Dachmann E, Hengst C, Ozcelik M, Kulozik U, Dombrowski J (2018) Impact of hydrocolloids and homogenization treatment on the foaming properties of raspberry fruit puree. Food Bioproc Technol 11:2253–2264. https://doi.org/10.1007/s11947-018-2179-1

    Article  CAS  Google Scholar 

  17. Freitas BSM, Cavalcante MD, Cagnin C, Silva RM, Plácido GR, Oliveira DEC (2018) Physical-chemical characterization of yellow mombin (Spondias mombin L.) foam-mat drying at different temperatures. Rev Bras Eng Agric e Ambient 22:430–435. https://doi.org/10.1590/1807-1929/agriambi.v22n6p430-435

    Article  Google Scholar 

  18. Kadam DM, Wilson RA, Kaur V, Chadha S, Kaushik P, Kaur S et al (2012) Physicochemical and microbial quality evaluation of foam-mat-dried pineapple powder. Int J Food Sci Technol 47:1654–1659. https://doi.org/10.1111/j.1365-2621.2012.03016.x

    Article  CAS  Google Scholar 

  19. Shaari NA, Sulaiman R, Rahman RA, Bakar J (2018) Production of pineapple fruit (Ananas comosus) powder using foam mat drying: effect of whipping time and egg albumen concentration. J Food Process Preserv 42:e13467. https://doi.org/10.1111/jfpp.13467

    Article  CAS  Google Scholar 

  20. Lobo FA, Nascimento MA, Domingues JR, Falcão DQ, Hernanz D, Heredia FJ et al (2017) Foam mat drying of Tommy Atkins mango: effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chem 221:258–266. https://doi.org/10.1016/j.foodchem.2016.10.080

    Article  CAS  PubMed  Google Scholar 

  21. Qadri OS, Srivastava AK (2017) Microwave-assisted foam mat drying of guava pulp: drying kinetics and effect on quality attributes. J Food Process Eng 40:e12295. https://doi.org/10.1111/jfpe.12295

    Article  CAS  Google Scholar 

  22. Abbasi E, Azizpour M (2016) Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT-Food Sci Technol 68:105–110. https://doi.org/10.1016/j.lwt.2015.12.004

    Article  CAS  Google Scholar 

  23. Fernandes RVB, Queiroz F, Botrel DA, Rocha VV, Souza VR, Lima CF (2014) Estudo da adi̧ão de albumina e da temperatura de secagem nas características de polpa de tomate em pó. Semin Agrar 35:1267–1278. https://doi.org/10.5433/1679-0359.2014v35n3p1267

    Article  Google Scholar 

  24. Sramek M, Schweiggert RM, Van Kampen A, Carle R, Kohlus R (2015) Preparation of high-grade powders from tomato paste using a vacuum foam drying method. J Food Sci 80:E1755–E1762. https://doi.org/10.1111/1750-3841.12965

    Article  CAS  PubMed  Google Scholar 

  25. Kadam DM, Wilson RA, Kaur S, Manisha (2012) Influence of foam mat drying on quality of tomato powder. Int J Food Prop 15:211–220. https://doi.org/10.1080/10942911003763701

    Article  CAS  Google Scholar 

  26. Kadam DM, Rai DR, Patil RT, Wilson RA, Kaur S, Kumar R (2011) Quality of fresh and stored foam mat dried mandarin powder. Int J Food Sci Technol 46:793–799. https://doi.org/10.1111/j.1365-2621.2011.02559.x

    Article  CAS  Google Scholar 

  27. Yalcin H, Çapar TD (2017) Bioactive compounds of fruits and vegetables. In: Yildiz F, Wiley R (eds) Minimally processed refrigerated fruits and vegetables. Food engineering series. Springer, Boston, pp 723–745

    Chapter  Google Scholar 

  28. Ortega AMM, Campos MRS (2019) Bioactive compounds as therapeutic alternatives. In: Campos MRS (ed) Bioactive compounds: health benefits and potential applications. Elsevier, Amsterdam, pp 247–264

    Chapter  Google Scholar 

  29. Hamzalıoğlu A, Gökmen V (2016) Interaction between bioactive carbonyl compounds and asparagine and impact on acrylamide. In: Gökmen V (ed) Acrylamide in food: analysis, content and potential health effects. Academic Press, Cambridge, pp 355–376

    Chapter  Google Scholar 

  30. Haas ICS, Toaldo IM, Gois JS, Borges DLG, Petkowicz CLO, Bordignon-Luiz MT (2016) Phytochemicals, monosaccharides and elemental composition of the non-pomace constituent of organic and conventional grape juices (Vitis labrusca L.): effect of drying on the bioactive content. Plant Foods Hum Nutr 71:422–428

    Article  CAS  Google Scholar 

  31. Lemus-Mondaca R, Ah-Hen K, Vega-Gálvez A, Honores C, Moraga NO (2016) Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods Hum Nutr 71:49–56

    Article  CAS  Google Scholar 

  32. Aghaei Z, Jafari SM, Dehnad D (2019) Effect of different drying methods on the physicochemical properties and bioactive components of saffron powder. Plant Foods Hum Nutr 74:171–178

    Article  CAS  Google Scholar 

  33. Davies KM, Schwinn KE, Gould KS (2017) Anthocyanins. In: Thomas B, Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, vol 2. Breeding genetics and biotechnology. Academic Press, Cambridge, pp 355–363

    Chapter  Google Scholar 

  34. Sui X (2017) Impact of food processing on anthocyanins. Springer, Heidelberg

    Book  Google Scholar 

  35. Djaeni M, Kumoro AC, Sasongko SB, Utari FD (2018) Drying rate and product quality evaluation of roselle (Hibiscus sabdariffa L.) calyces extract dried with foaming agent under different temperatures. Int J Food Sci 2018:9243549. https://doi.org/10.1155/2018/9243549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasongko SB, Djaeni M, Utari FD (2019) Kinetic of anthocyanin degradation in roselle extract dried with foaming agent at different temperatures. Bull Chem React Eng Catal 14:320–325. https://doi.org/10.9767/bcrec.14.2.2875.320-325

    Article  CAS  Google Scholar 

  37. Sun Y, Zhang Y, Xu W, Zheng X (2020) Analysis of the anthocyanin degradation in blue honeysuckle berry under microwave assisted foam-mat drying. Foods 9:397. https://doi.org/10.3390/foods9040397

    Article  CAS  PubMed Central  Google Scholar 

  38. Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16. https://doi.org/10.1007/s11418-019-01364-x

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. HarvestPlus, Washington, DC

    Google Scholar 

  40. Fardiyah Q, Rumhayati B, Khotimah YH (2018) The effect of temperature and concentration of foaming agent to the β-carotene content in product derived from carrots. IOP Conf Ser Mater Sci Eng 299.https://doi.org/10.1088/1757-899X/299/1/012008

  41. Pinto MRMR, Paula DA, Alves AI, Rodrigues MZ, Vieira ÉNR, Fontes EAF et al (2018) Encapsulation of carotenoid extracts from pequi (Caryocar brasiliense Camb) by emulsification (O/W) and foam-mat drying. Powder Technol 339:939–946. https://doi.org/10.1016/j.powtec.2018.08.076

    Article  CAS  Google Scholar 

  42. Vuolo MM, Lima VS, Maróstica Júnior MR (2019) Phenolic compounds: structure, classification, and antioxidant power. In: Campos MRS (ed) Bioactive compounds: health benefits and potential applications. Woodhead Publishing, Cambridge, pp 33–50

    Chapter  Google Scholar 

  43. Ruiz-Ruiz JC, Aldana GCE, Cruz AIC, Segura-Campos MR (2020) Antioxidant activity of polyphenols extracted from hop used in craft beer. In: Grumezescu AM, Holban AM (eds) Biotechnological progress and beverage consumption. Academic Press, Cambridge, pp 283–310

    Chapter  Google Scholar 

  44. Sritongtae B, Morgan MRA, Duangmal K (2017) Drying kinetics, physico-chemical properties, antioxidant activity and phenolic composition of foam-mat dried germinated rice bean (Vigna umbellata) hydrolysate. Int J Food Sci Technol 52:1710–1721. https://doi.org/10.1111/ijfs.13401

    Article  CAS  Google Scholar 

  45. Benković M, Radić K, Čepo DV, Jaškūnas E, Janutis L, Morkunaite M et al (2018) Production of cocoa and carob-based drink powders by foam mat drying. J Food Process Eng 41:1–11. https://doi.org/10.1111/jfpe.12825

    Article  Google Scholar 

  46. Buljat AM, Jurina T, Tušek AJ, Valinger D, Kljusurić JG, Benković M (2019) Applicability of foam mat drying process for production of instant cocoa powder enriched with lavender extract. Food Technol Biotechnol 57:159–170. https://doi.org/10.17113/ftb.57.02.19.6064

    Article  CAS  Google Scholar 

  47. Vasudevan N, Sulaiman R, Chong GH, Adzahan NA, Shaari NA (2020) Development of foam mat dried soursop powder using arabic gum and fish gelatin as foaming agent. Food Res 4:237–243. https://doi.org/10.26656/fr.2017.4(S1).S16

    Article  Google Scholar 

  48. Chazot C, Kopple JD (2013) Vitamin metabolism and requirements in renal disease and renal failure. In: Kopple JD, Zadeh KK (eds) Nutritional management of renal disease. Academic Press, Cambridge, pp 351–382

    Chapter  Google Scholar 

  49. Siepelmeyer A, Micka A, Simm A, Bernhardt J (2016) Nutritional biomarkers of aging. In: Malavolta M, Mocchegiani E (eds) Molecular basis of nutrition and aging. Molecular Nutrition Series, Academic Press, Cambridge, pp 109–120

    Chapter  Google Scholar 

  50. Carvalho TIM, Nogueira TYK, Mauro MA, Gómez-Alonso S, Gomes E, Da-Silva R et al (2017) Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: quantitative and qualitative changes of the phenolic compounds. Food Res Int 102:32–42. https://doi.org/10.1016/j.foodres.2017.09.068

    Article  CAS  Google Scholar 

  51. El-Salam EA, Ali AM, Hammad KS (2020) Foaming process optimization, drying kinetics and quality of foam mat dried papaya pulp. J Food Sci Technol 58:1449–1461.  https://doi.org/10.1007/s13197-020-04657-2

    Article  Google Scholar 

  52. Rin-ut S, Rattanapitigorn P (2020) Effect of foaming agents on process conditions, characteristics, and stability of foam-mat freeze-dried pandan (Pandanus amaryllifolius) powder. J Food Process Preserv 44:e14690. https://doi.org/10.1111/jfpp.14690

    Article  CAS  Google Scholar 

  53. Damodaran S (1996) Amino acids, peptides, and proteins. In: Fennema OR (ed) Food Chemistry, 3rd edn. Marcel Dekker, New York, pp 321–430

    Google Scholar 

  54. Walstra P (1996) Dispersed systems: basic considerations. In: Fennema OR (ed) Food chemistry, 3rd edn. Marcel Dekker, New York, pp 95–156

    Google Scholar 

  55. Bemiller JN, Whistler RL (1996) Carbohydrates. In: Fennema OR (ed) Food chemistry, 3rd edn. Marcel Dekker, New York, pp 157–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F. Richter Reis had the idea for the article, performed the literature search and data analysis, and drafted and/or critically revised the work. A. C. S. Moraes drafted the work. M. L. Masson critically revised the work.

Corresponding author

Correspondence to Felipe Richter Reis.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, F.R., de Moraes, A.C.S. & Masson, M.L. Impact of Foam-Mat Drying on Plant-Based Foods Bioactive Compounds: a Review. Plant Foods Hum Nutr 76, 153–160 (2021). https://doi.org/10.1007/s11130-021-00899-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00899-3

Keywords

Navigation