Skip to main content
Log in

Semi-quantum secure direct communication in the curved spacetime

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Cosmic string bearing energy-momentum tensor can cause spacetime bending and gravitation effect. Entanglement plays significant role in quantum communication and quantum cryptography. In this article, we examine the performance of semi-quantum secure direct communication (SQSDC) and its relation with entanglement affected by massless scalar field in the background of cosmic string spacetime. It is found that vacuum fluctuation, acceleration and nontrivial spacetime topology have profound effect on the fidelity and entanglement. Fidelity decreases fast to a fixed value and entanglement decays quickly with increasing acceleration and evolution time. When defect parameter \(\nu =1\) and atom is far away from the string, the evolution model restores to that of Minkowski spacetime. When atom is very close to the string, fidelity and entanglement are similar to that of Minkowski spacetime but related to topology defect parameter. For defect parameter \(\nu >1\), when acceleration is relatively small, fidelity and entanglement present oscillatory behavior for some time as atom-string distance increases. The results would shed light on quantum communication in curved spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shenoy-Hejamadi, A., Pathak, A., Radhakrishna, S.: Quantum cryptography: key distribution and beyond. Quanta 6, 1 (2017)

    Article  MathSciNet  Google Scholar 

  2. Huang, Z.M., Situ, H.Z.: Protection of quantum dialogue affected by quantum field. Quantum Inf. Process. 18, 37 (2019)

    Article  ADS  Google Scholar 

  3. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf. Process. 19, 97 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  4. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  6. Rong, Z.B., Qiu, D.W., Zou, X.F.: Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 59, 1807 (2020)

    Article  MathSciNet  Google Scholar 

  7. Rong, Z.B., Qiu, D.W., Mateus, P., Zou, X.F.: Mediated semi-quantum secure direct communication. Quantum Inf. Process. 20, 58 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  8. Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  9. Huang, Z.M.: Quantum teleportation in thermal fluctuating electromagnetic field. Int. J. Theor. Phys. 58, 383 (2019)

    Article  Google Scholar 

  10. Huang, Z.M.: Quantum secret sharing affected by vacuum fluctuation. Quantum Inf. Process. 18, 88 (2019)

    Article  ADS  Google Scholar 

  11. Huang, Z.M., Z.M.: He.Deterministic secure quantum communication under vacuum fluctuation. Eur. Phys. J. D 74, 176 (2020)

  12. Exirifard, Q., Culf, E., Karimi, E.: Towards communication in a curved spacetime geometry. Commun. Phys. 4, 171 (2021)

    Article  Google Scholar 

  13. Velenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  14. Saharian, A.A., Kotanjyan, A.S.: Repulsive Casimir-Polder forces from cosmic strings. Eur. Phys. J. C 71, 1765 (2011)

    Article  ADS  Google Scholar 

  15. Vilenkin, A.: Cosmic strings as gravitational lenses. Astrophys. J. 282, L51 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ford, L.H., Vilenkin, A.: A gravitational analogue of the Aharonov-Bohm effect. J. Phys. A: Math. Gen. 14, 2353 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  17. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  18. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  20. Vilenkin, A.: Gravitational field of vacuum domain walls and strings. Phys. Rev. D 23, 852 (1981)

    Article  ADS  Google Scholar 

  21. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic, Orlando, FL (1980)

    MATH  Google Scholar 

  22. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  23. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  24. Huang, Z.M., Zhang, W.: Quantum coherence behaviors for a uniformly accelerated atom immersed in fluctuating vacuum electromagnetic field with a boundary. Braz. J. Phys. 49, 161 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871205), the Guangdong Basic and Applied Basic Research Foundation (2021A1515012623, 2021A1515012138, 2019A1515011166), and the Project of Department of Education of Guangdong Province (2019KTSCX188, 2020KTSCX132).

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Field correlation function

Appendix: Field correlation function

$$\begin{aligned} G(\Delta \tau )=\frac{\nu }{8 \pi ^2 X \sqrt{\frac{1-\cosh (a \Delta \tau )}{a^2}} \sqrt{-\frac{\cosh (a \Delta \tau )}{a^2}+\frac{1}{a^2}+2 r^2} }, \end{aligned}$$
(35)

where \(\Delta \tau =\tau -\tau '\) and \(\displaystyle X=\frac{2}{r^{-2 \nu } \left[ -\frac{\cosh (a \Delta \tau )}{a^2}-\sqrt{\frac{1-\cosh (a \Delta \tau )}{a^2}} \sqrt{-\frac{\cosh (a \Delta \tau )}{a^2}+\frac{1}{a^2}+2 r^2}+\frac{1}{a^2}+r^2\right] ^{\nu }+1}-1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Rong, Z., Zou, X. et al. Semi-quantum secure direct communication in the curved spacetime. Quantum Inf Process 20, 375 (2021). https://doi.org/10.1007/s11128-021-03316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03316-5

Keywords

Navigation