Skip to main content
Log in

Simulation of three-spin evolution under XX Hamiltonian on quantum processor of IBM-Quantum Experience

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We simulate the evolution of three-node spin chain on the quantum processor of IBM Quantum Experience using the diagonalization of XX-Hamiltonian and representing the evolution operator in terms of CNOT operations and one-qubit rotations. We study the single excitation transfer from the first to the third node and show the significant difference between calculated and theoretical values of state transfer probability. Then, we propose a method reducing this difference by applying the two-parameter transformation including the shift and scale of the calculated probabilities. We demonstrate the universality of this transformation inside of the class of three-node evolutionary systems governed by the XX-Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, vol. 124 (1994)

  3. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zhao, L., Zhao, Zh., Rebentrost, P., Fitzsimons, J.: Compiling basic linear algebra subroutines for quantum computers. Quantum Mach. Intell. 3, 21 (2021)

    Article  Google Scholar 

  5. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. A 103, 150502 (2009)

    MathSciNet  Google Scholar 

  6. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 250504 (2013)

    Article  ADS  Google Scholar 

  7. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)

    Article  ADS  Google Scholar 

  8. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Childs, A.M.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. Luis, A., Peĩina, J.: Optimum phase-shift estimation and the quantum description of the phase difference. Phys. Rev. A 54, 4564 (1996)

    Article  ADS  Google Scholar 

  12. Griffiths, R.B., Niu, Ch.-Sh.: Semiclassical Fourier transform for quantum computation. Phys. Rev. Lett. 76, 3228 (1996)

    Article  ADS  Google Scholar 

  13. Aaronson, S.: Read the fine print. Nat. Phys. 11, 291 (2015)

    Article  Google Scholar 

  14. Shahandeh, F., Lund, A.P., Ralph, T.C., Vanner, M.R.: Arbitrary multi-qubit generation. New J. Phys. 18, 103020 (2016)

    Article  ADS  Google Scholar 

  15. Gibbs, J., Gili, K., Holmes, Z., Commeau, B., Arrasmith, A., Cincio, L., Coles, P.J., Sornborger, A.: Long-time simulations with high fidelity on quantum hardware. arXiv:2102.04313 (2021)

  16. Cîrstoiu, C., Holmes, Z., Iosue, J., Cincio, L., Coles, P.J., Sornborger, A.: Variational fast forwarding for quantum simulation beyond the coherence time. npj Quantum Inf. 6, 82 (2020)

    Article  ADS  Google Scholar 

  17. Zhukov, A.A., Remizov, S.V., Pogosov, W.V., Lozovik, Y.E.: Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Proc. 17, 223 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhukov A.A., Kiktenko E.O., Elistratov, A.A., Pogosov, W.V., Lozovik, Yu.E., Quantum communication protocols as a benchmark for programmable quantum computers. Quantum Inf. Proc. 18, 31 (2019)

  19. Vidal, G., Dawson, C.M.: Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A. 69, 010301 (2004)

    Article  ADS  Google Scholar 

  20. Doronin, S.I., Fel’dman, E.B., Zenchuk, A.I.: Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM Quantum Experience. Quantum Inf. Process. 19, 68 (2020)

Download references

Acknowledgements

Authors acknowledge the use of the IBM Quantum Experience for this work. The viewpoints expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Quantum Experience team. We acknowledge funding from the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2020-779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zenchuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doronin, S.I., Fel’dman, E.B. & Zenchuk, A.I. Simulation of three-spin evolution under XX Hamiltonian on quantum processor of IBM-Quantum Experience. Quantum Inf Process 20, 264 (2021). https://doi.org/10.1007/s11128-021-03181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03181-2

Keywords

Navigation