Skip to main content
Log in

Comparing classical and quantum PageRanks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker’s probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brin, S., Page, L.: Reprint of: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56, 3825 (2012)

    Article  Google Scholar 

  2. Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing Order to the Web, Technical Report, Stanford University, Stanford, CA (1998)

  3. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507 (2003)

    Article  MATH  Google Scholar 

  4. Paparo, G.D., Martin-Delgado, M.: Google in a quantum network. Sci. Rep. 2, 444 (2012)

  5. Sánchez-Burillo, E., Duch, J., Gómez-Gardeñes, J., Zueco, D.: Quantum navigation and ranking in complex networks. Sci. Rep. 2, 605 (2012)

  6. Montanaro, A.: Quantum walks on directed graphs. Quantum Inf. Comput. 7, 93 (2007)

  7. Paparo, G.D., Müller, M., Comellas, F., Martin-Delgado, M.A.: Quantum Google in a complex network. Sci. Rep. 3 (2013)

  8. Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82, 042333 (2010)

    Article  ADS  Google Scholar 

  9. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of 45th Annual IEEE Symposium on Foundations of Computer Science. IEEE, pp. 32–41 (2004)

  10. Szegedy, M.: Spectra of quantized walks and a \(\sqrt{\delta \epsilon }\) rule. arXiv: quant-ph/0401053 (2004)

  11. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM, pp. 50–59 (2001)

  12. Childs, A.: Lecture 11: Discrete-time quantum walk. http://www.cs.umd.edu/~amchilds/teaching/w13/l11.pdf, 14 Aug 2015

  13. Schult, D.A., Swart, P.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conferences (SciPy 2008), vol. 2008, pp. 11–16 (2008)

  14. Chiang, C.-F., Nagaj, D., Wocjan, P.: Efficient circuits for quantum walks. Quantum Inf. Comput. 10, 420 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Loke, T., Wang, J.B.: Efficient quantum circuits for Szegedy quantum walks. arXiv:1609.00173 (2016)

  16. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

  18. Rivas, Á., Huelga, S.F.: Open Quantum Systems. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  19. Saalfrank, P.: Open system density matrix theory: numerics and chemical applications. Course notes (1998–2000)

  20. Comellas, F., Miralles, A.: Modeling complex networks with self-similar outerplanar unclustered graphs. Phys. A 388, 2227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Comellas, F., Miralles, A.: Vertex labeling and routing in self-similar outerplanar unclustered graphs modeling complex networks. J. Phys. A Math. Theor. 42, 425001 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Everett, M.G.: Role similarity and complexity in social networks. Soc. Netw. 7, 353 (1985)

    Article  MathSciNet  Google Scholar 

  23. Borgatti, S.P., Everett, M.G.: Notions of position in social network analysis. Soc. Methodol. 22, 1 (1992)

    Article  Google Scholar 

  24. Barabáasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web. Nature 401, 130 (1999)

    Article  ADS  Google Scholar 

  26. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005)

    Article  ADS  Google Scholar 

  27. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947 (2005)

    Article  Google Scholar 

  28. Hein, D.-I.O., Schwind, D.-W.-I.M., König, W.: Scale-free networks. Wirtschaftsinformatik 48, 267 (2006)

    Article  Google Scholar 

  29. Barabási, A.-L., et al.: Scale-free networks: a decade and beyond. Science 325, 412 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Barabási, A.-L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A 281, 69 (2000)

    Article  Google Scholar 

  31. Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, pp. 132–139 (2003)

  32. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141 (1959)

  33. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    MathSciNet  MATH  Google Scholar 

  34. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Martin, T., Zhang, X., Newman, M.: Localization and centrality in networks. Phys. Rev. E 90, 052808 (2014)

    Article  ADS  Google Scholar 

  36. Donato, D., Laura, L., Leonardi, S., Millozzi, S.: Large scale properties of the webgraph. Eur. Phys. J. B Condens. Matter Complex Syst. 38, 239 (2004)

    Article  Google Scholar 

  37. Pandurangan, G., Raghavan, P., Upfal, E.: Using pagerank to characterize web structure. In: Proceedings of the 8th Annual International Computing and Combinatorics Conference (COCOON), 2002

Download references

Acknowledgements

This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. TL thanks the Okinawa Institute of Science and Technology as much background learning was done there under the research internship programme, supervised by Thomas Busch and Chandrashekar Madaiah.

Author contributions TL made the most significant contribution to this work, including the development of methodology, detailed simulation and analysis especially for DTQW, as well as preparation of the manuscript. JT and JR worked on the open-system CTQW formulation, simulation, and analysis; MS provided very helpful feedback on network analysis in general; and JW provided direction and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loke, T., Tang, J.W., Rodriguez, J. et al. Comparing classical and quantum PageRanks. Quantum Inf Process 16, 25 (2017). https://doi.org/10.1007/s11128-016-1456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1456-z

Keywords

Navigation