Skip to main content
Log in

A family of generalized quantum entropies: definition and properties

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a quantum version of the generalized \((h,\phi )\)-entropies, introduced by Salicrú et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum \((h,\phi )\)-entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. It is assumed that \(M {\ge } N\), otherwise p is completed with zeros; when \(M > N\), the remaining \(N-M\) terms that do not appear in Eq. (14) are added in order to fulfill the unitary of U and \(\lambda \) is to be understood as completed with zeros (for more details, see the proof of the Schrödinger mixture theorem [25, pp. 222–223]).

  2. Recall that a POVM is a set \(\{E_k\}\) of positive definite operators satisfying the resolution of the identity

  3. By definition, the partial trace operation over B, \({\text {Tr}}_B: {\mathcal {H}}_A^{N_A} \otimes {\mathcal {H}}_B^{N_B} \rightarrow {\mathcal {H}}_A^{N_A}\), is the unique linear operator such that \({\text {Tr}}_B X_A \otimes X_B = ( {\text {Tr}}_B X_B)X_A\) for all \(X_A\) and \(X_B\) acting on \({\mathcal {H}}_A^{N_A}\) and \({\mathcal {H}}_B^{N_B}\), respectively. For instance, let us consider the bases \(\{|e_i^A\rangle \}_{i=1}^{N_A}\) and \(\{|e_j^B\rangle \}_{j=1}^{N_B}\) of \({\mathcal {H}}_A^{N_A}\) and \({\mathcal {H}}_B^{N_B}\) respectively, and the product basis \(\{|e_i^A\rangle \otimes |e_j^B\rangle \}\) of \({\mathcal {H}}_A^{N_A} \otimes {\mathcal {H}}_B^{N_B}\). Let us denote by \(\rho ^{AB}_{i j,i' j'}\) the components in the product basis of an operator \(\rho ^{AB}\) acting on \({\mathcal {H}}_A^{N_A} \otimes {\mathcal {H}}_B^{N_B}\). Thus, the partial trace over B of \(\rho ^{AB}\) gives the density operator of the subsystem A, \(\rho ^A = {\text {Tr}}_B \rho ^{AB}\), whose components are \(\rho ^A_{i,i'} = \sum _j \rho ^{AB}_{i j,i' j}\) in the basis \(\{|e_i^A\rangle \}\).

  4. Notice that the Cauchy equations \(g(x+y) = g(x) + g(y)\), \(g(xy) = g(x)+g(y)\) and \(g(xy) = g(x) g(y)\) are not necessarily linear, logarithmic or power type, respectively, without additional assumptions on the domain where they are satisfied and on the class of admissible functions (see e.g. [43, 64]). But, recall that the entropic functionals h and \(\phi \) are continuous and either increasing and concave, or decreasing and convex.

  5. For \(\alpha = 0\) this subadditivity is also satisfied, but note that in this special case, \(\phi \) is not continuous and moreover does not fulfill the conditions of the proposition.

  6. Equivalently, the pure states \(|\psi _m^A \rangle \langle \psi _m^A|\) and \(|\psi _m^B \rangle \langle \psi _m^B|\) can be replaced by mixed states defined on \({\mathcal {H}}^A\) and \({\mathcal {H}}^B\), respectively [70].

References

  1. Jozsa, R., Schumacher, B.: A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41(12), 2343 (1994). doi:10.1080/09500349414552191

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Schumacher, B.: Quantum coding. Phys. Rev. A 51(4), 2738 (1995). doi:10.1103/PhysRevA.51.2738

    Article  ADS  MathSciNet  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  4. Renes, J.M.: The physics of quantum information: complementary uncertainty, and entanglement. Int. J. Quantum Inf. 11, 1330002 (2013). doi:10.1142/S0219749913300027

    Article  MathSciNet  MATH  Google Scholar 

  5. Ogawa, T., Hayashi, M.: On error exponents in quantum hypothesis testing. IEEE Trans. Inf. Theory 50(6), 1368 (2004). doi:10.1109/TIT.2004.828155

    Article  MathSciNet  MATH  Google Scholar 

  6. Holevo, A.: Probabilistic and Statistical Aspects of Quantum Theory. Quaderni Monographs, vol. 1, 2nd edn. Edizioni Della Normale, Pisa (2011)

    Book  Google Scholar 

  7. Gill, R.D., Guţă, M.I.: On asymptotic quantum statistical inference. In: Banerjee, M., Bunea, F., Huang, J., Koltchinskii, V., Maathuis, M.H. (eds.) From Probability to Statistics and Back: High-Dimensional Models and Processes—A Festschrift in Honor of Jon A. Wellner, vol. 9, pp. 105–127. Institute of Mathematical Statistics collections, Beachwood, Ohio, USA (2013). doi:10.1214/12-IMSCOLL909

  8. Yu, N., Duang, R., Ying, M.: Distinguishability of quantum states by positive operator-valued measures with positive partial transpose. IEEE Trans. Inf. Theory 60(4), 2069 (2004). doi:10.1109/TIT.2014.2307575

    Article  MathSciNet  Google Scholar 

  9. von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, pp. 273–291 (1927)

  10. Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, p. 547 (1961)

  11. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52(1–2), 479 (1988). doi:10.1007/BF01016429

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Canosa, N., Rossignoli, R.: Generalized nonadditive entropies and quantum entanglement. Phys. Rev. Lett. 88(17), 170401 (2002). doi:10.1103/PhysRevLett.88.170401

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hu, X., Ye, Z.: Generalized quantum entropy. J. Math. Phys. 47(2), 023502 (2006). doi:10.1063/1.2165794

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kaniadakis, G.: Statistical mechanics in the context of special relativity. Phys. Rev. E 66(5), 056125 (2002). doi:10.1103/PhysRevE.66.056125

    Article  ADS  MathSciNet  Google Scholar 

  15. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103 (1988). doi:10.1103/PhysRevLett.60.1103

    Article  ADS  MathSciNet  Google Scholar 

  16. Uffink, J.B.M.: Measures of uncertainty and the uncertainty principle. Ph.D. thesis, University of Utrecht, Utrecht, The Netherlands (1990). See also references therein

  17. Wehner, S., Winter, A.: Entropic uncertainty relations—a survey. New J. Phys. 12, 025009 (2010). doi:10.1088/1367-2630/12/2/025009

    Article  ADS  MathSciNet  Google Scholar 

  18. Zozor, S., Bosyk, G.M., Portesi, M.: On a generalized entropic uncertainty relation in the case of the qubit. J. Phys. A 46(46), 465301 (2013). doi:10.1088/1751-8113/46/46/465301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zozor, S., Bosyk, G.M., Portesi, M.: General entropy-like uncertainty relations in finite dimensions. J. Phys. A 47(49), 495302 (2014). doi:10.1088/1751-8113/47/49/495302

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, J., Zhang, Y., Yu, C.S.: Rényi entropy uncertainty relation for successive projective measurements. Quantum Inf. Process. 14(6), 2239 (2015). doi:10.1007/s11128-015-0950-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Horodecki, R., Horodecki, P.: Quantum redundancies and local realism. Phys. Lett. A 194(3), 147 (1994). doi:10.1016/0375-9601(94)91275-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Abe, S., Rajagopal, A.K.: Nonadditive conditional entropy and its significance for local realism. Phys. A 289(1–2), 157 (2001). doi:10.1016/S0378-4371(00)00476-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsallis, C., Lloyd, S., Baranger, M.: Peres criterion for separability through nonextensive entropy. Phys. Rev. A 63(4), 042104 (2001). doi:10.1103/PhysRevA.63.042104

    Article  ADS  Google Scholar 

  24. Rossignoli, R., Canosa, N.: Violation of majorization relations in entangled states and its detection by means of generalized entropic forms. Phys. Rev. A 67(4), 042302 (2003). doi:10.1103/PhysRevA.67.042302

    Article  ADS  Google Scholar 

  25. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  26. Huang, Y.: Entanglement detection: complexity and Shannon entropic criteria. IEEE Trans. Inf. Theory 59(10), 6774 (2013). doi:10.1109/TIT.2013.2257936

    Article  ADS  MathSciNet  Google Scholar 

  27. Ourabah, K., Hamici-Bendimerad, A., Tribeche, M.: Quantum entanglement and Kaniadakis entropy. Phys. Scr. 90(4), 045101 (2015). doi:10.1088/0031-8949/90/4/045101

    Article  ADS  Google Scholar 

  28. Yeung, R.W.: A framework for linear information inequalities. IEEE Trans. Inf. Theory 43(6), 1924 (1997). doi:10.1109/18.641556

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z., Yeung, R.W.: On characterization of entropy function via information inequalities. IEEE Trans. Inf. Theory 44(4), 1440 (1998). doi:10.1109/18.681320

    Article  MathSciNet  MATH  Google Scholar 

  30. Cardy, J.: Some results on the mutual information of disjoint regions in higher dimensions. J. Phys. A 28, 285402 (2013). doi:10.1088/1751-8113/46/28/285402

    Article  MathSciNet  MATH  Google Scholar 

  31. Gross, D., Walter, M.: Stabilizer information inequalities from phase space distributions. J. Math. Phys. 54(8), 082201 (2013). doi:10.1063/1.4818950

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wilde, M.M., Datta, N., Hsieh, M., Winter, A.: Quantum rate-distortion coding with auxiliary resources. IEEE Trans. Inf. Theory 59(10), 6755 (2013). doi:10.1109/TIT.2013.2271772

    Article  MathSciNet  Google Scholar 

  33. Datta, N., Renes, J.M., Renner, R., Wilde, M.M.: One-shot lossy quantum data compression. IEEE Trans. Inf. Theory 59(12), 8057 (2013). doi:10.1109/TIT.2013.2283723

    Article  MathSciNet  Google Scholar 

  34. Ahlswede, R., Löber, P.: Quantum data processing. IEEE Trans. Inf. Theory 47(1), 474 (2001). doi:10.1109/18.904565

    Article  MathSciNet  MATH  Google Scholar 

  35. Salicrú, M., Menéndez, M.L., Morales, D., Pardo, L.: Asymptotic distribution of \((h,\phi )\)-entropies. Commun. Stat. Theory Methods 22(7), 2015 (1993). doi:10.1080/03610929308831131

    Article  MathSciNet  MATH  Google Scholar 

  36. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  37. Havrda, J., Charvát, F.: Quantification method of classification processes: concept of structural \(\alpha \)-entropy. Kybernetika 3(1), 30 (1967)

    MathSciNet  MATH  Google Scholar 

  38. Daróczy, Z.: Generalized information functions. Inf. Control 16(1), 36 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rathie, P.N.: Unified \((r, s)\)-entropy and its bivariate measures. Inf. Sci. 54(1–2), 23 (1991). doi:10.1016/0020-0255(91)90043-T

    Article  MathSciNet  MATH  Google Scholar 

  40. Burbea, J., Rao, C.R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inf. Theory 28(3), 489 (1982). doi:10.1109/TIT.1982.1056497

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, Y., Busch, P.: Von Neumann entropy and majorization. J. Math. Anal. Appl. 408(1), 384 (2013). doi:10.1016/j.jmaa.2013.06.019

    Article  MathSciNet  MATH  Google Scholar 

  42. Csiszàr, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica 2, 299 (1967)

    MathSciNet  MATH  Google Scholar 

  43. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality, 2nd edn. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  44. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New-York (2011). doi:10.1007/978-0-387-68276-1

    Book  MATH  Google Scholar 

  45. Karamata, J.: Sur une inegalité relative aux fonctions convexes. Publications Mathématiques de l’Université de Belgrade 1, 145 (1932)

    MATH  Google Scholar 

  46. Bhatia, R.: Matrix Analysis. Springer, New-York (1997)

    Book  MATH  Google Scholar 

  47. Khinchin, A.I.: Mathematical Foundations of Information Theory. Dover Publications, New-York (1957)

    MATH  Google Scholar 

  48. Tempesta, P.: Beyond the Shannon–Khinchin formulation: the composability axiom and the universal-group entropy. Ann. Phys. 365, 180 (2016). doi:10.1016/j.aop.2015.08.013

    Article  ADS  MathSciNet  Google Scholar 

  49. Fadeev, D.K.: On the concept of entropy of a finite probabilistic scheme (Russian). Uspekhi Matematicheskikh Nauk 11(1(67)), 227 (1956)

    MathSciNet  Google Scholar 

  50. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World. Springer, New-York (2009). doi:10.1007/978-0-387-85359-8

    MATH  Google Scholar 

  51. Tempesta, P.: Formal groups and Z-entropies. arXiv preprint arXiv:1507.07436 (2016)

  52. Rastegin, A.E.: Rényi and Tsallis formulations of noise-disturbance trade-off relations. Quantum Inf. Comput. 16(3&4), 0313 (2016)

    Google Scholar 

  53. Rastegin, A.E.: Some general properties of unified entropies. J. Stat. Phys. 143(6), 1120 (2011). doi:10.1007/s10955-011-0231-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Fan, Y.J., Cao, H.X.: Monotonicity of the unified quantum \((r, s)\)-entropy and \((r, s)\)-mutual information. Quantum Inf. Process. 14(12), 4537 (2015). doi:10.1007/s11128-015-1126-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Sharma, N.: Equality conditions for the quantum \(f\)-relative entropy and generalized data processing inequalities. Quantum Inf. Process. 11(1), 137 (2012). doi:10.1007/s11128-011-0238-x

    Article  MathSciNet  MATH  Google Scholar 

  56. Lieb, E.H.: Some convexity and subadditvity properties of entropy. Bull. Am. Math. Soc. 81(1), 1 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wehrl, A.: General properties of entropies. Rev. Mod. Phys. 50(2), 221 (1978). doi:10.1103/RevModPhys.50.221

    Article  ADS  MathSciNet  Google Scholar 

  58. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  59. Lamberti, P.W., Portesi, M., Sparacino, J.: Natural metric for quantum information theory. Int. J. Quantum Inf. 7(5), 1009 (2009). doi:10.1142/S0219749909005584

    Article  MATH  Google Scholar 

  60. Bosyk, G.M., Bellomo, G., Zozor, S., Portesi, M., Lamberti, P.W.: Unified entropic measures of quantum correlations induced by local measurements. arXiv preprint arXiv:1604.00329 (2016)

  61. Nielsen, M.A.: Probability distributions consistent with a mixed state. Phys. Rev. A 62, 052308 (2000). doi:10.1103/PhysRevA.62.052308

    Article  ADS  Google Scholar 

  62. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013). doi:10.1063/1.4838856

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Halmos, P.R.: A Hilbert Space Problem Book, 2nd edn. Springer, New-York (1982)

    Book  MATH  Google Scholar 

  64. Cauchy, A.L.: Cours d’analyse de l’école royale polytechnique, vol. 1: analyse algébrique (Imprimerie royale (digital version, Cambrige, 2009), Paris, 1821)

  65. Raggio, G.A.: Properties of \(q\)-entropies. J. Math. Phys. 36(9), 4785 (1995). doi:10.1063/1.530920

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Audenaert, K.M.R.: Subadditivity of \(q\)-entropies for \(q>1\). J. Math. Phys. 48(8), 083507 (2007). doi:10.1063/1.2771542

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Daróczy, Z., Járai, A.: On the measurable solution of a functional equation arising in information theory. Acta Mathematica Academiae Scientiarum Hungaricae 34(1–2), 105 (1979). doi:10.1007/bf01902599

    Article  MathSciNet  MATH  Google Scholar 

  68. Rényi, A.: Probability Theory. North-Holland Publishing Company, Amsterdand (1970)

    MATH  Google Scholar 

  69. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989). doi:10.1103/PhysRevA.40.4277

    Article  ADS  Google Scholar 

  70. Nielsen, M.A., Kempe, J.: Separable states are more disordered globally than locally. Phys. Rev. Lett. 86(22), 5184 (2001). doi:10.1103/PhysRevLett.86.5184

    Article  ADS  Google Scholar 

  71. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957). doi:10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Horodecki, R., Horodecki, M., Horodecki, P.: Entanglement processing and statistical inference: the Jaynes principle can produce fake entanglement. Phys. Rev. A 59(3), 1799 (1999). doi:10.1103/PhysRevA.59.1799

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35(10), 3066 (1987). doi:10.1103/PhysRevD.35.3066

    Article  ADS  MathSciNet  Google Scholar 

  74. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65(27), 3373 (1990). doi:10.1103/PhysRevLett.65.3373

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in \(N\)-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89(6), 060401 (2002). doi:10.1103/PhysRevLett.89.060401

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). doi:10.1103/RevModPhys.81.865

  77. Furuichi, S.: Information theoretical properties of Tsallis entropies. J. Math. Phys. 47(2), 023302 (2006). doi:10.1063/1.2165744

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Rastegin, A.E.: Convexity inequalities for estimating generalized conditional entropies from below. Kybernetika 48(2), 242 (2012). http://eudml.org/doc/246939

  79. Teixeira, A., Matos, A., Antunes, L.: Conditional Rényi entropies. IEEE Trans. Inf. Theory 58(7), 4272 (2012). doi:10.1109/TIT.2012.2192713

    Article  MathSciNet  Google Scholar 

  80. Fehr, S., Berens, S.: On the conditional Rényi entropy. IEEE Trans. Inf. Theory 60(11), 6801 (2014). doi:10.1109/TIT.2014.2357799

    Article  MathSciNet  Google Scholar 

  81. Tomamichel, M., Berta, M., Hayashi, M.: Relating different quantum generalizations of the conditional Rényi entropy. J. Math. Phys. 55(8), 082206 (2014). doi:10.1063/1.4892761

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Gigena, N., Rossignoli, R.: Generalized conditional entropy in bipartite quantum systems. J. Phys. A 47(1), 015302 (2014). doi:10.1088/1751-8113/47/1/015302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001). doi:10.1103/PhysRevLett.88.017901

    Article  ADS  MATH  Google Scholar 

  84. Jurkowski, J.: Quantum discord derived from Tsallis entropy. Int. J. Quantum Inf. 11(01), 1350013 (2013). doi:10.1142/S0219749913500135

    Article  MathSciNet  MATH  Google Scholar 

  85. Bellomo, G., Plastino, A., Majtey, A.P., Plastino, A.R.: Comment on “Quantum discord through the generalized entropy in bipartite quantum states”. Eur. Phys. J. D 68(337), 1 (2014)

    Google Scholar 

  86. Berta, M., Seshadreesan, K.P., Wilde, M.M.: Rényi generalizations of quantum information measures. Phys. Rev. A 91(2), 022333 (2015). doi:10.1103/PhysRevA.91.022333

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

GMB, FH, MP and PWL acknowledge CONICET and UNLP (Argentina), and MP and PWL also acknowledge SECyT-UNC (Argentina) for financial support. SZ is grateful to the University of Grenoble-Alpes (France) for the AGIR financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Bosyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosyk, G.M., Zozor, S., Holik, F. et al. A family of generalized quantum entropies: definition and properties. Quantum Inf Process 15, 3393–3420 (2016). https://doi.org/10.1007/s11128-016-1329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1329-5

Keywords

Navigation