Skip to main content
Log in

Generation of multi-atom entangled states in coupled cavities via transitionless quantum driving

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient scheme to generate three-atom W states in spatially separated cavities connected by optical fibers. In the scheme, we combine the “transitionless quantum driving” with “quantum Zeno dynamics” to construct a shortcut to fast generate W states. Comparing with the traditional adiabatic passage, the significant advantage is that the interaction time required for the creation of the W state is much shorter, which is very important in view of decoherence. Furthermore, the harmful effects of various decoherence such as atomic spontaneous emission, cavity losses and the fiber photon leakages are considered. Numerical simulations illustrate that the shortcut scheme is much faster than the schemes using adiabatic passage and robust against the decoherence. Moreover, this scheme can also be generalized to generation of N-atom W states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153–2156 (1997)

    Article  ADS  Google Scholar 

  3. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics (Long Island City, NY) 1, 195–200 (1965)

    Google Scholar 

  4. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314(12) (2000)

    ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. An, N.B.: Cavity-catalyzed deterministic generation of maximal entanglement between nonidentical atoms. Phys. Lett. A 344, 77–83 (2005)

    Article  Google Scholar 

  8. Zhang, C.L., Li, W.Z., Chen, M.F.: Preparation of W state among spatially separated atomic ensembles collectively controlled by a single atom via adiabatic passage. Opt. Commun. 311, 301–306 (2013)

    Article  ADS  Google Scholar 

  9. Song, J., Xia, Y., Song, H.S.: Entangled state generation via adiabatic passage in two distant cavities. J. Phys. B 40, 4503–4511 (2007)

    Article  ADS  Google Scholar 

  10. Bastin, T., Thiel, C., von Zanthier, J., Lamata, L., Solano, E., Agarwal, G.S.: Operational determination of multiqubit entanglement classes via tuning of local operations. Phys. Rev. Lett. 102, 053601(4) (2009)

    Article  ADS  Google Scholar 

  11. Wang, X.W., Yang, G.J., Su, Y.H., Xie, M.: Simple schemes for quantum information processing with W-type entanglement. Quantum Inf. Process. 8, 431–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, R.X., Shen, L.T.: Tripartite entanglement of atoms trapped in coupled cavities via quantum Zeno dynamics. Phys. Lett. A 375, 3840–3844 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Zhong, Z.R.: Generation of entanglement of multiple atoms via distant cavities. Opt. Commun. 283, 1972–1974 (2010)

    Article  ADS  Google Scholar 

  14. Lu, M., Xia, Y., Song, J., An, N.B.: Generation of N-atom W-class states in spatially separated cavities. J. Opt. Soc. Am. B 30, 2142–2147 (2013)

    Article  ADS  Google Scholar 

  15. Chen, Y.H., Xia, Y., Song, J.: Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage. Quantum Inf. Process. 12, 3771–3783 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Castro, A.O., Johnson, N.F., Quiroga, L.: Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit-cavity systems. Phys. Rev. A 70, 020301(R)(4) (2004)

    Google Scholar 

  17. Zheng, S.B.: Scalable generation of multi-atom W states with a single resonant interaction. J. Opt. B Quantum Semiclass. Opt. 7, 10–13 (2005)

    Article  ADS  Google Scholar 

  18. Fewell, M.P., Shore, B.W., Bergmann, K.: Coherent population transfer among three states: full algebraic solutions and the relevance of non adiabatic processes to transfer by delayed pulses. Aust. J. Phys. 50, 281–308 (1997)

    Article  ADS  Google Scholar 

  19. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)

    Article  ADS  Google Scholar 

  20. Vitanov, N.V., Halfmann, T., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. 52, 763–809 (2001)

    Article  ADS  Google Scholar 

  21. Král, P., Thanopulos, L., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)

    Article  ADS  Google Scholar 

  22. Misra, B., Sudarshan, E.C.G.: The Zenos paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  23. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295–2300 (1990)

    Article  ADS  Google Scholar 

  24. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763–4766 (1995)

    Article  ADS  Google Scholar 

  25. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12–19 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401(4) (2002)

    Article  MathSciNet  ADS  Google Scholar 

  27. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003(4) (2010)

    ADS  Google Scholar 

  28. Torrontegui, E., Ibánẽz, S., Modugno, S., Campo, A.D., Gué-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Shortcuts to adiabaticity. Adv. Atomic Mol. Opt. Phys. 62, 117–169 (2013)

    Article  Google Scholar 

  29. Campo, A.D.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502(5) (2013)

    Google Scholar 

  30. Masuda, S., Nakamura, K.: Acceleration of adiabatic quantum dynamics in electromagnetic fields. Phys. Rev. A 84, 043434(11) (2011)

    Article  ADS  Google Scholar 

  31. Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303(9) (2009)

    Google Scholar 

  32. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326(7) (2014)

    ADS  Google Scholar 

  33. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856(12) (2014)

    ADS  Google Scholar 

  34. Lu, M., Xia, Y., Shen, L.T., Song, J.: Using shortcut to adiabatic passage for the ultrafast quantum state transfer in cavity QED system. Laser Phys. 24, 105201(7) (2014)

    ADS  Google Scholar 

  35. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states preparation and transition. Laser Phys. Lett. 11, 115201(14) (2014)

    ADS  Google Scholar 

  36. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325(15) (2015)

    ADS  Google Scholar 

  37. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for fast generation of Greenberger–Horne–Zeilinger states by transitionless quantum driving (2014). arXiv:1411.6747

  38. Muga, J.G., Chen, X., Ruschhaupt, A., Guéry-Odelin, D.: Frictionless dynamics of Bose–Einstein condensates under fast trap variations. J. Phys. B 42, 241001(4) (2009)

    Article  ADS  Google Scholar 

  39. Chen, X., Ruschhaupt, A., Schmidt, S., Campo, A.D., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002(4) (2010)

    ADS  Google Scholar 

  40. Chen, X., Muga, J.G.: Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Phys. Rev. A 82, 053403(7) (2010)

    ADS  Google Scholar 

  41. Schaff, J.F., Capuzzi, P., Labeyrie, G., Vignolo, P.: Shortcuts to adiabaticity for trapped ultracold gases. New J. Phys. 13, 113017(31) (2011)

    Article  ADS  Google Scholar 

  42. Torrontegui, E., Ibáñez, S., Chen, X., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Fast atomic transport without vibrational heating. Phys. Rev. A 83, 013415(9) (2011)

    ADS  Google Scholar 

  43. Chen, X., Torrontegui, E., Stefanatos, D., Li, J.S., Muga, J.G.: Optimal trajectories for efficient atomic transport without final excitation. Phys. Rev. A 84, 043415(9) (2011)

    ADS  Google Scholar 

  44. Torrontegui, E., Chen, X., Modugno, M., Schmidt, S., Ruschhaupt, A., Muga, J.G.: Fast transport of Bose–Einstein condensates. New J. Phys. 14, 013031(11) (2012)

    Article  Google Scholar 

  45. Li, Y., Wu, L.A., Wang, Z.D.: Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Phys. Rev. A 83, 043804(5) (2011)

    ADS  Google Scholar 

  46. Campo, A.D.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84, 031606(R)(4) (2011)

    ADS  Google Scholar 

  47. Campo, A.D.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 96, 60005 (2011)

    Google Scholar 

  48. Ruschhaupt, A., Chen, X., Alonso, D., Muga, J.G.: Optimally robust shortcuts to population inversion in two-level quantum systems. New J. Phys. 14, 093040(19) (2012)

    Article  ADS  Google Scholar 

  49. Schaff, J.F., Song, X.L., Vignolo, P., Labeyrie, G.: Fast optimal transition between two equilibrium states. Phys. Rev. A 82, 033430(5) (2010)

    Article  ADS  Google Scholar 

  50. Schaff, J.F., Song, X.L., Capuzzi, P., Vignolo, P., Labeyrie, G.: Shortcut to adiabaticity for an interacting Bose–Einstein condensate. Eur. Phys. Lett. 93, 23001(5) (2011)

    Article  ADS  Google Scholar 

  51. Godsilal, C., Kirkland, S., Severini, S., Smith, J.: Number-theoretic nature of communication in quantum spin systems. Phys. Rev. Lett. 109, 050502(4) (2012)

    ADS  Google Scholar 

  52. Tseng, S.Y., Chen, X.: Engineering of fast mode conversion in multimode waveguides. Opt. Lett. 37, 5118 (2012)

    Article  ADS  Google Scholar 

  53. Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116(8) (2011)

    ADS  Google Scholar 

  54. Song, L.C., Xia, Y., Song, J.: Noise resistance of Toffoli gate in an array of coupled cavities. J. Mod. Opt. 61, 1290–1297 (2014)

    Article  ADS  Google Scholar 

  55. Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91, 032304(8) (2015)

    Article  ADS  Google Scholar 

  56. Liang, Y., Ji, X.: Shortcuts to adiabatic passage for multiqubit controlled phase gate (2014). arXiv:1411.7434

  57. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  58. Enk, S.J.V., Kimble, H.I., Cirac, J.L., Zoller, p: Quantum communication with dark photons. Phys. Rev. A 59, 2659–2664 (1999)

    Article  ADS  Google Scholar 

  59. Zheng, S.B.: Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities. Eur. Phys. J. D 54, 719–722 (2005)

    Article  ADS  Google Scholar 

  60. Ye, S.Y., Zhong, Z.R., Zheng, S.B.: Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities. Phys. Rev. A 77, 014303(4) (2008)

    ADS  Google Scholar 

  61. Giampaolo, S.M., Illuminati, F.: Long-distance entanglement and quantum teleportation in coupled-cavity arrays. Phys. Rev. A 80, 050301(R)(4) (2009)

    Article  ADS  Google Scholar 

  62. Zhang, K., Li, Z.Y.: Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Phys. Rev. A 81, 033843(10) (2010)

    ADS  Google Scholar 

  63. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  64. Zhong, Z.R., Huang, X.B.: An unconventional geometric phase gate between two arbitrary qubits in a two-dimensional network. J. Opt. Soc. Am. B 32, 258–264 (2015)

    Article  ADS  Google Scholar 

  65. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503(4) (2006)

    ADS  Google Scholar 

  66. Ye, J., Vernooy, D.W., Kimble, H.J.: Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999)

    Article  ADS  Google Scholar 

  67. Spillane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817(10) (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11404061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Rong Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XB., Zhong, ZR. & Chen, YH. Generation of multi-atom entangled states in coupled cavities via transitionless quantum driving. Quantum Inf Process 14, 4475–4492 (2015). https://doi.org/10.1007/s11128-015-1138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1138-2

Keywords

Navigation