Skip to main content
Log in

Simulation of the Majorana equation in circuit QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to simulate the 1D Majorana equation with two Cooper pair boxes coupled to a 1D superconducting transmission line resonator, where strong coupling limit can be achieved. With proper choice of systematic parameters, we are able to engineer different kind of interactions, which are indispensable for simulating the Majorana equation in an enlarged real Hilbert space. Measurement of a conserved observable, i.e., the pseudo-helicity, via transmission spectrum of the cavity field can verify the simulated Majorana wave function. The measurement is experimentally resolvable according to our estimation based on conservative experimental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buluta, I., Nori, F.: Quantum simulators. Science 326, 108–111 (2009)

    Article  ADS  Google Scholar 

  2. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

  3. Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012)

    Article  Google Scholar 

  4. Thaller, B.: The Dirac equation. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  5. Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  6. Zhu, S.-L., Wang, B., Duan, L.-M.: Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys. Rev. Lett. 98, 260402 (2007)

  7. Juzeliūnas, G., Ruseckas, J., Lindberg, M., Santos, L., Öhberg, P.: Quasirelativistic behavior of cold atoms in light fields. Phys. Rev. A 77, 011802 (2008)

    Article  ADS  Google Scholar 

  8. Ruseckas, J., Juzeliūnas, G., Öhberg, P., Fleischhauer, M.: Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005)

    Article  ADS  Google Scholar 

  9. Zhu, S.-L., Fu, H., Wu, C.-J., Zhang, S.-C., Duan, L.-M.: Spin Hall effects for cold atoms in a light-induced gauge potential. Phys. Rev. Lett. 97, 240401 (2006)

    Article  ADS  Google Scholar 

  10. Lamata, L., León, J., Schätz, T., Solano, E.: Dirac equation and quantum relativistic effects in a single trapped ion. Phys. Rev. Lett. 98, 253005 (2007)

    Article  ADS  Google Scholar 

  11. Casanova, J., García-Ripoll, J.J., Gerritsma, R., Roos, C.F., Solano, E.: Klein tunneling and Dirac potentials in trapped ions. Phys. Rev. A 82, 020101 (2010)

    Article  ADS  Google Scholar 

  12. Gerritsma, R., Kirchmair, G., Zähringer, F., Solano, E., Blatt, R., Roos, C.F.: Quantum simulation of the Dirac equation. Nature (London) 463, 68–71 (2010)

    Article  ADS  Google Scholar 

  13. Wilczek, F.: Majorana returns. Nat. Phys. 5, 614–618 (2009)

    Article  Google Scholar 

  14. Casanova, J., Sabín, C., León, J., Egusquiza, I.L., Gerritsma, R., Roos, C.F., García-Ripoll, J.J., Solano, E.: Quantum simulation of the Majorana equation and unphysical operation. Phys. Rev. X 1, 021018 (2011)

    Google Scholar 

  15. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. phys. 73, 357–400 (2001)

    Article  ADS  MATH  Google Scholar 

  16. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42–47 (2005)

    Article  Google Scholar 

  17. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature (London) 474, 589–597 (2011)

    Article  ADS  Google Scholar 

  18. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  19. Xiang, Z.-L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. phys. 85, 623–653 (2013)

    Article  ADS  Google Scholar 

  20. Houck, A.A., Täreci, H.E., Koch, J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012)

    Article  Google Scholar 

  21. Shevchenko, S.N., Ashhab, S., Nori, F.: Landau-Zener-Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010)

    Article  ADS  Google Scholar 

  22. Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F.: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012)

    Article  ADS  Google Scholar 

  23. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  24. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in superconducting microwave circuits. Phys. Rev. A 82, 052509 (2010)

    Article  ADS  Google Scholar 

  25. Johansson, J.R., Johansson, G., Wilson, C.M., Delsing, P., Nori, F.: Nonclassical microwave radiation from the dynamical Casimir effect. Phys. Rev. A 87, 043804 (2013)

    Article  ADS  Google Scholar 

  26. Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature (London) 479, 376–379 (2011)

    Article  ADS  Google Scholar 

  27. You, J.Q., Shi, X.-F., Hu, X., Nori, F.: Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010)

    Article  ADS  Google Scholar 

  28. You, J.Q., Wang, Z.D., Zhang, W., Nori, F.: Manipulating and probing Majorana fermions using superconducting circuits. arXiv:1108.3712 (2011)

  29. Xue, Z.-Y., Wang, Z.D., Zhu, S.-L.: Physical implementation of topologically decoherence-protected superconducting qubits. Phys. Rev. A 77, 024301 (2008)

    Article  ADS  Google Scholar 

  30. Xue, Z.-Y., Zhu, S.-L., You, J.Q., Wang, Z.D.: Implementing topological quantum manipulation with superconducting circuits. Phys. Rev. A 79, 040303 (2009)

    Article  ADS  Google Scholar 

  31. Xue, Z.-Y.: Simulation of anyonic fractional statistics of Kitaevs toric model in circuit QED. EPL 93, 20007 (2011)

    Article  ADS  Google Scholar 

  32. Zhou, L., Gong, Z.R., Liu, Y.-X., Sun, C.P., Nori, F.: Controllable scattering of photons inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  33. Zhou, L., Dong, H., Liu, Y.-X., Sun, C.P., Nori, F.: Quantum super-cavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)

    Article  ADS  Google Scholar 

  34. Zhou, L., Yang, S., Liu, Y.-X., Sun, C.P., Nori, F.: Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)

    Article  ADS  Google Scholar 

  35. Liao, J.-Q., Gong, Z.R., Zhou, L., Liu, Y.-X., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010)

    Article  ADS  Google Scholar 

  36. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  37. Zhu, S.-L., Wang, Z.D., Yang, K.: Quantum-information processing using Josephson junctions coupled through cavities. Phys. Rev. A 68, 034303 (2003)

    Article  ADS  Google Scholar 

  38. Zhu, S.-L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. Xue, Z.-Y., Wang, Z.D.: Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity. Phys. Rev. A 75, 064303 (2007)

    Article  ADS  Google Scholar 

  40. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162 (2004)

    Article  ADS  Google Scholar 

  41. Zhu, S.-L., Monroe, C., Duan, L.-M.: Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006)

    Article  ADS  Google Scholar 

  42. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  43. Xue, Z.-Y.: Fast geometric gate operation of superconducting charge qubits in circuit QED. Quantum Inf. Process. 11, 1381–1388 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  45. Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)

    Article  ADS  Google Scholar 

  46. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  47. Sarovar, M., Goan, H.-S., Spiller, T.P., Milburn, G.J.: High-fidelity measurement and quantum feedback control in circuit QED. Phys. Rev. A 72, 062327 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NFRPC (No. 2013CB921804, No. 2011CB922104) NSFC (No. 60978009 and No. 91121023), the PCSIRT (No. IRT1243), and the Zhongshan municipal scientific project (No. 20123A326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yuan Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Shan, CJ., Zhang, ZM. et al. Simulation of the Majorana equation in circuit QED. Quantum Inf Process 13, 1813–1823 (2014). https://doi.org/10.1007/s11128-014-0777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0777-z

Keywords

Navigation