Skip to main content

Advertisement

Log in

Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2–3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197–209, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Asztalos E, Sipka G, Kis M, Trotta M, Maróti P (2012) The reaction center is the sensitive target of the mercury(II) ion in intact cells of photosynthetic bacteria. Photosyn Res 112:129–140

    Article  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, van der Werf CO, Otto C, Hunter CN, Olsen JD (2004) Flexibility and size heterogeneity of the LH1 light-harvesting complex revealed by atomic force microscopy. J Biol Chem 279:21327–21333

    Article  CAS  Google Scholar 

  • Becker M, Nagarajan V, Parson WW (1991) Properties of the excited-singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents. J Am Chem Soc 113:6840–6848

    Article  CAS  Google Scholar 

  • Bernhardt K, Trissl H-W (2000) Escape probability and trapping mechanism in purple bacteria: revisited. Biochim Biophys Acta 1457:1–17

    Article  CAS  Google Scholar 

  • Borisov AY, Freiberg AM, Godik VI, Rebane KK, Timpmann KE (1985) Kinetics of picosecond bacteriochlorophyll luminescence in vivo as a function of the reaction center state. Biochim Biophys Acta 807:221–229

  • Bullough PA, Qian P, Hunter CN (2009) Reaction center-light-harvesting core complexes of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 155–179

    Chapter  Google Scholar 

  • Connolly JS, Samue EB, Janzen AF (1982) Effects of solvent on the fluorescence properties of bacteriochlorophyll a. Photochem Photobiol 36:565–574

    Article  CAS  Google Scholar 

  • Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L (2011) Light-Induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor. Biochemistry 50:5249–5262

    Article  CAS  Google Scholar 

  • Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279:2063–2068

    Article  CAS  Google Scholar 

  • Fraser NJ, Hashimoto H, Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: the story so far. Photosyn Res 70:249–256

    Article  CAS  Google Scholar 

  • Garbers A, Reifarth F, Kurreck J, Renger G, Parak F (1998) Correlation between protein flexibility and electron transfer from QA -• to QB in PSII membrane fragments from spinach. Biochemistry 37:11399–11404

    Article  CAS  Google Scholar 

  • Gurinovich GP, Losev AP, Sagun EI (1976) Energetics of associated molecules of chlorophylls a and b and bacteriochlorophyll. J Appl Spectrosc (USSR) 26:740–744

    Article  Google Scholar 

  • Heath OVS (1969) The physiological aspects of photosynthesis. Stanford University Press, Stanford

    Google Scholar 

  • Hunter CN, van Grondelle R, Olsen JD (1989) Photosynthetic antenna proteins: 100 ps before photochemistry starts. Trends Biochem Sci 14:72–76

    Article  CAS  Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN, Bullough PA (2002) Projection structure of the photosynthetic reaction centre–antenna complex of Rhodospirillum rubrum at 8.5 Ǻ resolution. EMBO J 21:3927–3935

    Article  CAS  Google Scholar 

  • Kaftan D, Bina D, Koblнžek M (2019) Temperature dependence of photosynthetic reaction centre activity in Rhodospirillum rubrum. Photosyn Res 142:181–193

    Article  CAS  Google Scholar 

  • Kholina EG, Kovalenko IB, Bozdaganyan ME, Strakhovskaya MG, Orekhov PS (2020) Cationic antiseptics facilitate pore formation in model bacterial membranes. J Phys Chem B 124:8593–8600

    Article  CAS  Google Scholar 

  • Knox PP, Churbanova IYu, Lukashev EP, Zakharova NI, Rubin AB, Borissevitch GP (2000) Dipyridamole and its derivatives modify the kinetics of the electron transport in reaction centers from Rhodobacter sphaeroides. J Photochem Photobiol 56:68–77

    Article  CAS  Google Scholar 

  • Knox PP, Lukashev EP, Mamedov MD, Semenov AYu, Borissevitch GP (2001) Proton transfer in bacterial reaction centers and bacteriorhodopsin in the presence of dipyridamole. Prog React Kinet Mech 26:287–298

    Article  CAS  Google Scholar 

  • Makhneva ZK, Toropygina OA, Moskalenko AA (1997) The behavior of the carotenoids in the Rhodospirillum rubrum cells under cultivation with diphenylamine. Doklady Biochem Biophys (moscow) 355:259–261

    CAS  Google Scholar 

  • McMahon BH, Muller JD, Wraight CA, Nienhaus GU (1998) Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J 74:2567–2587

    Article  CAS  Google Scholar 

  • Nagatsuma S, Gotou K, Yamashita T, Yu L-J, Shen J-R, Madigan MT, Kimura Y, Wang-Otomo Z-Y (2019) Phospholipid distributions in purple phototrophic bacteria and LH1-RC core complexes. Biochim Biophys Acta 1860:461–468

    Article  CAS  Google Scholar 

  • Ogren JI, Tong AL, Gordon SC, Chenu A, Lu Y, Blankenship RE, Cao J, Schlau-Cohen GS (2018) Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. Chem Sci 9:3095–3104

    Article  CAS  Google Scholar 

  • Paschenko VZ, Gorokhov VV, Grishanova NP, Goryacheva EA, Korvatovsky BN, Knox PP, Zakharova NI, Rubin AB (1998) The influence of structural-dynamic organization of RC from purple bacterium Rhodobacter sphaeroides on picosecond stages of photoinduced reactions. Biochim Biophys Acta 1364:361–372

    Article  CAS  Google Scholar 

  • Scheuring S, Sturgis JN (2009) Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. Photosyn Res 102:197–211

    Article  CAS  Google Scholar 

  • Sipka G, Kis M, Maróti P (2018) Characterization of mercury(II)-induced inhibition of photochemistry in the reaction center of photosynthetic bacteria. Photosynth Res 136:379–392

    Article  CAS  Google Scholar 

  • Somsen OJG, van Mourik F, van Grondelle R, Valkunas L (1994) Energy migration and trapping in a spectrally and spatially inhomogeneous light-harvesting antenna. Biophys J 66:1580–1596

    Article  CAS  Google Scholar 

  • Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NKh, Knox PP, Paschenko VZ (2021) The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. Photosyn Res 147:197–209

    Article  CAS  Google Scholar 

  • Swainsbury DJK, Qian P, Jackson PJ et al (2021) Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Sci Adv 7:eabe2631

    Article  CAS  Google Scholar 

  • Tandori J, Mate Z, Maroti P, Vass I (1996) Resistance of reaction centers from Rhodobacter sphaeroides against UV-B radiation. Effects on protein structure and electron transport. Photosyn Res 50:171–179

    Article  CAS  Google Scholar 

  • Tokaji Z, Tandori J, Maróti P (2002) Light- and redox-dependent thermal stability of the reaction center of the photosynthetic bacterium Rhodobacter sphaeroides. Photochem Photobiol 75:605–612

    Article  CAS  Google Scholar 

  • Trissl HW, Law CJ, Cogdell RJ (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature. Biochim Biophys Acta 1412:149–172

    Article  CAS  Google Scholar 

  • Zabelin AA, Khristin AM, Shkuropatova VA, Khatypov RA, Shkuropatov AY (2020) Primary electron transfer in Rhodobacter sphaeroides R-26 reaction centers under dehydration conditions. Biochim Biophys Acta - Bioenerget 1861:48238

Download references

Acknowlegements

Funding the research was carried out as a part of the Science Project of the State Order of the Government of Russia Federation to Lomonosov Moscow State University N 121032500058-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina G. Strakhovskaya.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knox, P.P., Lukashev, E.P., Korvatovskiy, B.N. et al. Disproportionate effect of cationic antiseptics on the quantum yield and fluorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores. Photosynth Res 153, 103–112 (2022). https://doi.org/10.1007/s11120-022-00909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-022-00909-8

Keywords

Navigation