Skip to main content

Advertisement

Log in

Improved photosynthetic characteristics correlated with enhanced biomass in a heterotic F1 hybrid of maize (Zea mays L.)

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Heterosis is a phenomenon wherein F1 hybrid often displays phenotypic superiority and surpasses its parents in terms of growth and agronomic traits. Investigations on the physiological and biochemical properties of the heterotic F1 hybrid are important to uncover the mechanisms underlying heterosis in plants. In the present study, the photosynthetic capacity of a heterotic F1 hybrid of Zea mays L. (DHM 117) that exhibited a higher growth rate and increased biomass was compared with its parental inbreds at vegetative and reproductive stages in the field during 2017 and 2018. The net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E) as well as foliar carbohydrates were higher in F1 hybrid than parental inbreds at vegetative and reproductive stages. An increase in total chlorophyll content along with better chlorophyll a fluorescence characteristics including effective quantum yield of photosystem II (ΔF/Fm’), maximum quantum yield of PSII (Fv/Fm), photochemical quenching (qp) and decreased non-photochemical quenching (NPQ) was observed in F1 hybrid than the parental inbreds. Further, the expression of potential genes related to C4 photosynthesis was considerably upregulated in F1 hybrid than the parental inbreds during vegetative and reproductive stages. Moreover, the F1 hybrid exhibited distinct heterosis in yield with 63% and 62% increase relative to parental inbreds during 2017 and 2018. We conclude that improved photosynthetic efficiency associated with increased foliar carbohydrates could have contributed to higher growth rate, biomass and yield in the F1 hybrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araus JL, Sanchez C, Cabrera-Bosquet L (2010) Is heterosis in maize mediated through better water use? New Phytol 187:392–406

    Article  CAS  PubMed  Google Scholar 

  • Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63:6309–6314

    Article  CAS  PubMed  Google Scholar 

  • Bassi D, Menossi M, Mattiello L (2018) Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep 8:2327

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsogon A, Nunes-Nesi A, Araujo WL (2020) Engineering improved photosynthesis in the era of synthetic biology. Plant Comm 1:100032

    Article  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  PubMed  Google Scholar 

  • Blum A (2013) Heterosis, stress, and the environment: a possible road map towards the general improvement of crop yield. J Exp Bot 64:4829–4837

    Article  CAS  PubMed  Google Scholar 

  • Boda RK, Majeti NVP, Suthari S (2017) Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil. Environ Sci Pollut Res 24:19955–19964

    Article  Google Scholar 

  • Buckley TN, Mott KA (2013) Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 36:1691–1699

    Article  PubMed  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li W, Lu Q, Wen X, Li H, Kuang T, Li Z, Lu C (2011) The xanthophyll cycle and antioxidative defense system are enhanced in the wheat hybrid subjected to high light stress. J Plant Physiol 168:1828–1836

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen F, Chen Y, Gao Q, Yang X, Yuan L, Zhang F, Mi G (2013) Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Glob Chang Biol 19:923–936

    Article  PubMed  Google Scholar 

  • Chen L, Yuan Y, Wu J, Chen Z, Wang L, Shahid MQ, Liu X (2019) Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes. Rice 12:019–0294

    Article  Google Scholar 

  • Cooper M, Gho C, Leafgren R, Tang T, Messina C (2014) Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot 65:6191–6204

    Article  CAS  PubMed  Google Scholar 

  • d’Amour CB, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb K-H, Haberl H, Creutzig F, Seto KC (2017) Future urban land expansion and implications for global croplands. Proc Natl Acad Sci USA 114:8939–8944

    Article  Google Scholar 

  • de Souza TC, Magalhaes PC, de Castro EM, de Albuquerque PEP, Marabesi MA (2013) The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiol Plant 35:515–527

    Article  Google Scholar 

  • Dinç E, Ceppi MG, Tóth SZ, Bottka S, Schansker G (2012) The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. BBA Bioenerg 1817:770–779

    Article  Google Scholar 

  • Egilla JN, Davies FT, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43:135–140

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Feher K, Lisec J, Römisch-Margl L, Selbig J, Gierl A, Piepho H-P, Nikoloski Z, Willmitzer L (2014) Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach. PLoS ONE 9:e85435

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedland N, Negi S, Wu G, Ma L, Flynn S, Cahoon E, Lee C-H, Sayre RT (2019) Tuning the photosynthetic light harvesting apparatus for improved efficiency and biomass yield. Sci Rep 9:13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto R, Taylor JM, Shirasawa S, Peacock WJ, Dennis ES (2012) Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc Natl Acad Sci USA 109:7109–7114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorio P, Sorrentino G, d’Andria R (1999) Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ Exp Bot 42:95–104

    Article  Google Scholar 

  • Groszmann M, Gonzalez-Bayon R, Greaves IK, Wang L, Huen AK, Peacock WJ, Dennis ES (2014) Intraspecific Arabidopsis hybrids show different patterns of heterosis despite the close relatedness of the parental genomes. Plant Physiol 166:265–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Methods of estimating starch and carbohydrates. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 380–394

    Google Scholar 

  • Ibraheem F, El-Ghareeb EM (2019) Assessment of natural variability in leaf morphological and physiological traits in maize inbreds and their related hybrids during early vegetative growth. Egypt J Basic Appl Sci 6:25–45

    Article  Google Scholar 

  • Khanna-Chopra R (1982) Photosynthesis, photosynthetic enzymes and leaf area development in relation to hybrid vigour in Sorghum vulgare L. Photosynth Res 3:113–122

    Article  CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl Notes 1:27–35

    Google Scholar 

  • Küppers M, Schmitt D, Liner S, Böhm C, Kanzler M, Veste M (2018) Photosynthetic characteristics and simulation of annual leaf carbon gains of hybrid poplar (Populus nigra L. × P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) in a temperate agroforestry system. Agrofor Syst 92:1267–1286

    Article  Google Scholar 

  • Kusumi K, Hirotsuka S, Kumamaru T, Iba K (2012) Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J Exp Bot 63:5635–5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laza RC, Bergman B, Vergara BS (1993) Cultivar differences in growth and chloroplast ultrastructure in rice as affected by nitrogen. J Exp Bot 44:1643–1648

    Article  CAS  Google Scholar 

  • Leach KA, Tran TM, Slewinski TL, Meeley RB, Braun DM (2017) Sucrose transporter2 contributes to maize growth, development, and crop yield. J Integr Plant Biol 59:390–408

    Article  CAS  PubMed  Google Scholar 

  • Li C-F, Tao Z-Q, Liu P, Zhang J-W, Zhuang K-Z, Dong S-T, Zhao M (2015) Increased grain yield with improved photosynthetic characters in modern maize parental lines. J Integr Agric 14:1735–1744

    Article  CAS  Google Scholar 

  • Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, Zhou M, Tian D, Tang M, Wu Q, Liu X, Chen T, Song X, Fu X, Zhao B, Liang C, Li A, Liu G, Li S, Hu S, Cao X, Yu J, Yuan L, Chen C, Zhu L (2016) Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc Natl Acad Sci USA 113:E6026–E6035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Coffey L, Garfin J, Miller ND, White MR, Spalding EP, de Leon N, Kaeppler SM, Schnable PS, Springer NM, Hirsch CN (2018) Genotype-by-environment interactions affecting heterosis in maize. PLoS ONE 13:e0191321

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1:F4.3.1–F4.3.8

    Article  Google Scholar 

  • Liu P-C, Peacock WJ, Wang L, Furbank R, Larkum A, Dennis ES (2020) Leaf growth in early development is key to biomass heterosis in Arabidopsis. J Exp Bot 71:2439–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improved photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Matthews JSA, Vialet-Chabrand SRM, Lawson T (2017) Diurnal variation in gas exchange: the balance between carbon fixation and water loss. Plant Physiol 174:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Pullaiahgari D, Gudipalli P (2018) Proteomic analysis of heterotic seed germination in maize using F1 hybrid DHM 117 and its parental inbreds. Turkish J Biol 42:345–363

    Article  Google Scholar 

  • Mehta H, Sarkar KR (1992) Heterosis for leaf photosynthesis, grain yield and yield components in maize. Euphytica 61:161–168

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Najafi E, Devineni N, Khanbilvardi RM, Kogan F (2018) Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future 6:410–427

    Article  CAS  Google Scholar 

  • Nakano H, Makino A, Mae T (1997) The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol 115:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi S, Perrine Z, Friedland N, Kumar A, Tokutsu R, Minagawa J, Berg H, Barry AN, Govindjee G, Sayre R (2020) Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J 103:584–603

    Article  CAS  PubMed  Google Scholar 

  • Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2008) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Offermann S, Peterhansel C (2014) Can we learn from heterosis and epigenetics to improve photosynthesis? Curr Opin Plant Biol 19:105–110

    Article  CAS  PubMed  Google Scholar 

  • O’Neill PM, Shanahan JF, Schepers JS (2006) Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. Crop Sci 46:681–687

    Article  CAS  Google Scholar 

  • Özdemir E, Sade B (2019) Comparison of maize lines and their test crosses according to grain yield and some physiological properties. Turk J Agric For 43:115–122

    Article  Google Scholar 

  • Peng S, Krieg DR, Girma FS (1991) Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum lines. Photosynth Res 28:1–7

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Li C, Fritschi FB (2014) Diurnal dynamics of maize leaf photosynthesis and carbohydrate concentrations in response to differential N availability. Environ Exp Bot 99:18–27

    Article  CAS  Google Scholar 

  • Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142

    Article  Google Scholar 

  • Popescu M, Popescu GC (2014) Diurnal changes in leaf photosynthesis and relative water content of grapevine. Curr Trends Nat Sci 3:74–81

    Google Scholar 

  • Qi X, Xu W, Zhang J, Guo R, Zhao M, Hu L, Wang H, Dong H, Li Y (2017) Physiological characteristics and metabolomics of transgenic wheat containing the maize C4phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma 254:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Zheng G, Hamdani S, Essemine J, Song Q, Wang H, Chu C, Sirault X, Zhu X-G (2017) Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey. Plant Physiol 175:248–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405

    Article  CAS  Google Scholar 

  • Ratzmann G, Zakharova L, Tietjen B (2019) Optimal leaf water status regulation of plants in drylands. Sci Rep 9:3768

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy KS, Sekhar KM, Sreeharsha RV, Reddy AR (2019) Hydraulic dynamics and photosynthetic performance facilitate rapid screening of field grown mulberry (Morus spp.) genotypes for drought tolerance. Environ Exp Bot 157:320–330

    Article  Google Scholar 

  • Renger G (2007) Primary processes of photosynthesis: principles and apparatus, 2 Parts. Royal Society of Chemistry Publishers, Cambridge

    Book  Google Scholar 

  • Reyes TH, Scartazza A, Lu Y, Yamaguchi J (2016) Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. Plant Physiol Biochem 105:195–202

    Article  Google Scholar 

  • Rockenbach MF, Correa CCG, Heringer AS, Freitas ILJ, Santa-Catarina C, do Amaral-Junior AT, Silveira V (2018) Differentially abundant proteins associated with heterosis in the primary roots of popcorn. PLoS ONE 13:e0197114

    Article  PubMed  PubMed Central  Google Scholar 

  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

    Article  Google Scholar 

  • Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta D, Guha A, Reddy AR (2013) Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery. J Photochem Photobiol B 127:170–181

    Article  CAS  PubMed  Google Scholar 

  • Shezi S, Magwaza LS, Mashilo J, Tesfay SZ, Mditshwa A (2019) Photosynthetic efficiency and relationship to mesocarp dry matter content of ‘Carmen’ avocado (Persea americana Mill.) fruit in a cool subtropical climate. Sci Hortic 253:209–216

    Article  CAS  Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec 3:307

    Article  Google Scholar 

  • Sinha SK, Khanna R (1975) Physiological, biochemical, and genetic basis of heterosis. Adv Agron 27:123–174

    Article  Google Scholar 

  • Song G-S, Zhai H-L, Peng Y-G, Zhang L, Wei G, Chen X-Y, Xiao Y-G, Wang L, Chen Y-J, Wu B, Chen B, Zhang Y, Chen H, Feng X-J, Gong W-K, Liu Y, Yin Z-J, Wang F, Liu G-Z, Xu H-L, Wei X-L, Zhao X-L, Ouwerkerk PBF, Hankemeier T, Reijmers T, Heijden Rvd L-M, Wang M, Jvd G, Zhu Z (2010) Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol Plant 3:1012–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Zhang Z, Tan X, Jiang Y, Gao J, Lin L, Wang Z, Ren J, Wang X, Qin L, Cheng W, Qi J, Kuai B (2016) Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize. Sci Rep 6:29843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreeharsha RV, Mudalkar S, Sengupta D, Unnikrishnan DK, Reddy AR (2019) Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO2 environment in pigeonpea (Cajanus cajan L.). Photosynth Res 139:425–439

    Article  CAS  PubMed  Google Scholar 

  • Sulpice R, Nikoloski Z, Tschoep H, Antonio C, Kleessen S, Larhlimi A, Selbig J, Ishihara H, Gibon Y, Fernie AR, Stitt M (2013) Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions. Plant Physiol 162:347–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W-B, Zhang G-L, Xiao Y-H, Deng H-B, Fan K, Liu G-H, Chen L-Y (2010) Physiological and biochemical characteristics in flag leaves of the C liangyou series of hybrid rice combinations at late growth stages. Rice Sci 17:319–325

    Article  Google Scholar 

  • Tazoe Y, Sazuka T, Yamaguchi M, Saito C, Ikeuchi M, Kanno K, Kojima S, Hirano K, Kitano H, Kasuga S, Endo T, Fukuda H, Makino A (2016) Growth properties and biomass production in the hybrid C4 crop Sorghum bicolor. Plant Cell Physiol 57:944–952

    Article  CAS  PubMed  Google Scholar 

  • Valentinuz OR, Tollenaar M (2004) Vertical profile of leaf senescence during the grain-filling period in older and newer maize hybrids. Crop Sci 44:827–834

    Google Scholar 

  • Wang T, Sui Z, Liu X, Li Y, Li H, Xing J, Song F, Zhang Y, Sun Q, Ni Z (2016) Ectopic expression of a maize hybrid up-regulated gene, ErbB-3 binding Protein 1 (ZmEBP1), increases organ size by promoting cell proliferation in Arabidopsis. Plant Sci 243:23–34

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Huang D, Chen B, Mao N, Qiao Y, Ji M (2018) Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp. Genes Genom 40:321–331

    Article  CAS  Google Scholar 

  • Wei X, Wang B, Peng Q, Wei F, Mao K, Zhang X, Sun P, Liu Z, Tang J (2015) Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed 35:94

    Article  Google Scholar 

  • Yan H, Liu J, Huang HQ, Tao B, Cao M (2009) Assessing the consequence of land use change on agricultural productivity in China. Glob Planet Change 67:13–19

    Article  Google Scholar 

  • Zhang C-J, Chu H-J, Chen G-X, Shi D-W, Zuo M, Wang J, Lu C-G, Wang P, Chen L (2007) Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. J Plant Res 120:209–217

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhou Y, Yue Z, Chen X, Cao X, Ai X, Jiang B, Xing Y (2019) The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions. PLoS ONE 14:e0219209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Mei X, Wang Y, Huang G, Feng F, Liu X, Guo R, Gu F, Hu X, Yang Z, Zhong X, Li Y (2020) Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity. PeerJ 8:e8927

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu A, Greaves IK, Liu PC, Wu L, Dennis ES, Peacock WJ (2016) Early changes of gene activity in developing seedlings of Arabidopsis hybrids relative to parents may contribute to hybrid vigour. Plant J 88:597–607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RKM gratefully acknowledges the Department of Biotechnology (DBT), New Delhi for providing DBT-JRF fellowship (DBT/JRF/14/AL/128, dated 20th June 2014) to carry out this work. We are very much grateful to Prof. S. Sokka Reddy, Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, and Dr. M. R. Sudharshan, Principal Scientist, Maize Research Centre, PJTSAU, Rajendranagar, Hyderabad, for providing the seeds of inbreds and F1 hybrid used in the study. We also thank Dr. M. Muthamilarasan, Department of Plant Sciences for his help in editing the manuscript. We also thank DBT-CREBB programme of the School of Life Sciences and DST-FIST Level-II (Phase-II) and UGC-SAP-DRS-1 programmes of the Department of Plant Sciences, University of Hyderabad for the infrastructural support. We also thank the University of Hyderabad for providing partial financial support for research from UGC-University Potential for Excellence (UPE) and DST-PURSE programmes that helped in conducting few experiments in this study.

Author information

Authors and Affiliations

Authors

Contributions

PG has conceived the research project and together with RKM has designed the experiments. RKM, KSR and RG has carried out the experiments and the data was analysed and interpreted by RKM with the help of KSR and PG. RKM, RG and SM wrote the manuscript with inputs and corrections from PG and ARR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Padmaja Gudipalli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 836 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, R.K., Reddy, K.S., Gautam, R. et al. Improved photosynthetic characteristics correlated with enhanced biomass in a heterotic F1 hybrid of maize (Zea mays L.). Photosynth Res 147, 253–267 (2021). https://doi.org/10.1007/s11120-021-00822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00822-6

Keywords

Navigation