Skip to main content

Advertisement

Log in

Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Abadía J, López-Millán AF, Rombolà A, Abadía A (2002) Organic acids and Fe deficiency: a review. Plant Soil 241:75–86

    Google Scholar 

  • Ager FJ, Ynsa MD, Domınguez-Solıs JR, López-Martın MC, Gotor C, Romero LC (2003) Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nucl Instrum Meth B 210:401–406

    CAS  Google Scholar 

  • Akkus Ozen S, Yaman M (2017) Examination of correlation between histidine, sulfur, cadmium, and cobalt absorption by Morus L., Robinia pseudoacacia L., and Populus nigra L. Commun Soil Sci Plant Anal 48:1212–1220

    CAS  Google Scholar 

  • Álvarez-Fernández A, Díaz-Benito P, Abadía A, López-Millán AF, Abadía J (2014) Metal species involved in long distance metal transport in plants. Front Plant Sci 5: article 105

  • Alves S, Nabais C, Simões Gonçalves ML, Correia dos Santos M (2011) Nickel speciation in the xylem sap of the hyperaccumulator Alyssum serpyllifolium ssp. lusitanicum growing on serpentine soils of northeast Portugal. J Plant Physiol 168:1715–1722

    CAS  PubMed  Google Scholar 

  • Ando Y, Nagata S, Yanagisawa S, Yoneyama T (2013) Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct Plant Biol 40:89–100

    CAS  Google Scholar 

  • Andresen E, Mattusch J, Wellenreuther G, Thomas G, Abad UA, Küpper H (2013) Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L. Metallomics 5:1377–1386

    CAS  PubMed  Google Scholar 

  • Andresen E, Peiter E, Küpper H (2018) Trace metal metabolism in plants. J Exp Bot 69:909–954

    CAS  PubMed  Google Scholar 

  • Assunção AG, Martins PD, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226

    Google Scholar 

  • Assunção AG, Bookum WM, Nelissen HJ, Vooijs R, Schat H, Ernst WH (2003a) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    PubMed  Google Scholar 

  • Assunção AG, Schat H, Aarts MGM (2003b) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperacummulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Ernst WHO, van der Ent A, Malaisse F, Ginocchio R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge, pp 7–40

    Google Scholar 

  • Baklanov IA, Seregin IV, Ivanov VB (2009) Histochemical analysis of nickel distribution in the hyperaccumulator and excluder in the genus Alyssum L. Doklady Biol Sci 429:548–550

    CAS  Google Scholar 

  • Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci 108:E450–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir K, Nozoye T, Nagasaka S, Rasheed S, Miyauchi N, Seki M, Nakanishi H, Nishizawa NK (2017) Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. J Exp Bot 68:1785–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beasley JT, Bonneau JP, Johnson AA (2017) Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.). PLoS ONE 12:e0177061

    PubMed  PubMed Central  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    CAS  PubMed  Google Scholar 

  • Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    CAS  PubMed  Google Scholar 

  • Bert V, Macnair MR, De Laguerie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    CAS  PubMed  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, De Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    CAS  PubMed  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716

    CAS  Google Scholar 

  • Bikard D, Patel D, Le Metté C, Giorgi V, Camilleri C, Bennett MJ, Loudet O (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323:623–626

    CAS  PubMed  Google Scholar 

  • Blindauer CA, Schmid R (2010) Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics 2:510–529

    CAS  PubMed  Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49:740–749

    CAS  PubMed  Google Scholar 

  • Blum R, Meyer KC, Wünschmann J, Lendzian KJ, Grill E (2010) Cytosolic action of phytochelatin synthase. Plant Physiol 153:159–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bovet L, Eggmann T, Meylan-Bettex M, Polier J, Kammer P, Marin E, Feller U, Martinoia E (2003) Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ 26:371–381

    CAS  Google Scholar 

  • Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int 31:263–267

    CAS  PubMed  Google Scholar 

  • Boyd RS, Wall MA, Jaffré T (2009) Do tropical nickel hyperaccumulator mobilize metals into epiphytes? A test using Bryophytes from New Caledonia. Northeast Nat 16:139–154

    Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environ Sci Technol 38:5797–5802

    CAS  PubMed  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    CAS  Google Scholar 

  • Brooks RR, Reeves RD, Baker AJM, Rizzo JA, Diaz Ferreira H (1990) The Brazilian serpentine plant expedition (BRASPEX). Natl Geogr Res 6:205–219

    Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanita di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings overexpressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M (2015) Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot 66:3815–3829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan DL, Kolev SD, O’Hair RAJ, Baker AJM (2005) The detection of nicotianamine in nickel hyperaccumulating plants. In: Lombi E (ed) Proceedings of the 8th International Conference on the Biogeochemistry of Trace Elements (ICOBTE). Adelaide, Australia: CSIRO Land and Water Adelaide, pp 822–823

  • Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    CAS  PubMed  Google Scholar 

  • Callahan DL, Kolev SD, O’Hair RA, Salt DE, Baker AJ (2007) Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators. New Phytol 176:836–848

    CAS  PubMed  Google Scholar 

  • Callahan DL, Roessner U, Dumontet V, De Livera AM, Doronila A, Baker AJ, Kolev SD (2012) Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry 81:80–89

    CAS  PubMed  Google Scholar 

  • Carroll SB (2000) Endless forms: the evolution of gene regulation and morphological diversity. Cell 101:577–580

    CAS  PubMed  Google Scholar 

  • Cazalé AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219

    PubMed  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragón A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    CAS  PubMed  Google Scholar 

  • Charlier JB, Polese C, Nouet C, Carnol M, Bosman B, Krämer U, Motte P, Hanikenne M (2015) Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives. J Exp Bot 66:3865–3878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Bush DR (1997) LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis. Plant Physiol 115:1127–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Goldsbrough PB (1994) Increased activity of [gamma]-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    CAS  Google Scholar 

  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Sahito ZA, Zhang M, Feng Y, Yang Q, Yang X (2018) Identification and characterization of four nicotianamine synthase genes in Sedum alfredii Hance. J Biobased Mater Bioenergy 12:551–559

    CAS  Google Scholar 

  • Choi HR, Kwon YM, Hwang ID, Lee CH (1996) Phytochelatins in cadmium-treated seedlings of Canavalia lineata. Mol Cells 6:451–455

    CAS  Google Scholar 

  • Chu HH, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE, Walker EL (2010) Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiol 154:197–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    CAS  PubMed  Google Scholar 

  • Clemens S (2014) Zn and Fe biofortification: the right chemical environment for human bioavailability. Plant Sci 225:52–57

    CAS  PubMed  Google Scholar 

  • Clemens S (2019) Metal ligands in micronutrient acquisition and homeostasis. Plant Cell Environ 42:2902–2912

    CAS  PubMed  Google Scholar 

  • Clemens S, Peršoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271

    CAS  Google Scholar 

  • Clemens S, Simm C (2003) Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. New Phytol 159:323–330

    CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S, Palmgren M, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    CAS  PubMed  Google Scholar 

  • Clemens S, Deinlein U, Ahmadi H, Höreth S, Uraguchi S (2013) Nicotianamine is a major player in plant Zn homeostasis. Biometals 26:623–632

    CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  PubMed  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78

    CAS  PubMed  Google Scholar 

  • Cointry V, Vert G (2019) The bifunctional transporter-receptor IRT 1 at the heart of metal sensing and signalling. New Phytol 223:1173–1178

    PubMed  Google Scholar 

  • Collins RN, Merrington G, McLaughlin MJ, Morel JL (2003) Organic ligand and pH effects on isotopically exchangeable cadmium in polluted soils. Soil Sci Soc Am J 67:112–121

    CAS  Google Scholar 

  • Conte SS, Chu HH, Chan-Rodriguez D, Punshon T, Vasques K, Salt DE, Walker EL (2013) Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis. Front Plant Sci 4: article 283

  • Cornu JY, Deinlein U, Höreth S, Braun M, Schmidt H, Weber M, Persson DP, Husted S, Schjoerring JK, Clemens S (2015) Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytol 206:738–750

    CAS  PubMed  Google Scholar 

  • Corso M, de la Torre VSG (2020) Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics. https://doi.org/10.1039/d0mt00043d

    Article  PubMed  Google Scholar 

  • Corso M, Schvartzman MS, Guzzo F, Souard F, Malkowski E, Hanikenne M, Verbruggen N (2018) Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. New Phytol 218:283–297

    CAS  PubMed  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    CAS  PubMed  Google Scholar 

  • Craciun AR, Meyer CL, Chen J, Roosens N, De Groodt R, Hilson P, Verbruggen N (2012) Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J Exp Bot 63:4179–4189

    CAS  PubMed  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    CAS  PubMed  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research. Clarendon Press, Oxford

    Google Scholar 

  • de Knecht JA, van Dillen M, Koevoets PL, Schat H, Verkleij JA, Ernst WH (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol 104:255–261

    PubMed  PubMed Central  Google Scholar 

  • Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Tanke IN, Krämer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24:708–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Jackson PJ, Lujan LD, Robinson NJ (1989) Poly (γ-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium: role in cadmium tolerance. Plant Physiol 89:700–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng THB, Tang YT, van der Ent A, Sterckeman T, Echevarria G, Morel JL, Qiu RL (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45

    CAS  Google Scholar 

  • Deng THB, Tang YT, Sterckeman T, Echevarria G, Morel JL, Qiu RL (2019) Effects of the interactions between nickel and other trace metals on their accumulation in the hyperaccumulator Noccaea caerulescens. Environ Exp Bot 158:73–79

    CAS  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Di Donato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J 39:403–414

    CAS  PubMed  Google Scholar 

  • Divol F, Couch D, Conéjéro G, Roschzttardtz H, Mari S, Curie C (2013) The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast. Plant Cell 25:1040–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douchkov D, Herbik A, Koch G, Mock HP, Melzer M, Stephan UW, Bäumlein H (2002) Nicotianamine synthase: gene isolation, gene transfer and application for the manipulation of plant iron assimilation. Plant Soil 241:115–119

    CAS  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW, Hell R, Bäumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    CAS  Google Scholar 

  • Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439

    PubMed  Google Scholar 

  • Ducruix C, Junot C, Fievet JB, Villiers F, Ezan E, Bourguignon J (2006) New insights into the regulation of phytochelatin biosynthesis in A. thaliana cells from metabolite profiling analyses. Biochimie 88:1733–1742

    CAS  PubMed  Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci 103:6518–6523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes (J. and C. Presl). Planta 214:635–640

    CAS  PubMed  Google Scholar 

  • Ernst WHO (1999) Effects of heavy metals in plants at the cellular and organismic level. In: Schuurmann G, Markert B (ed) Ecotoxicology. Ecological Fundamentals, Chemical Exposure and Biological Effects. Wiley Publishing House. Heidelberg. pp 587–620

  • Ernst WH (2000) Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146:357–358

    Google Scholar 

  • Ernst WH, Verkleij JA, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Fan W, Guo Q, Liu C, Liu X, Zhang M, Long D, Xiang Z, Zhao A (2018) Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. Gene 645:95–104

    CAS  PubMed  Google Scholar 

  • Fersht A (1999) Structure and Mechanism in Protein Science W.H. Freeman and Company, New York

  • Filiz E, Saracoglu IA, Ozyigit II, Yalcin B (2019) Comparative analyses of phytochelatin synthase (PCS) genes in higher plants. Biotechnol Biotechnol Equip 33:178–194

    CAS  Google Scholar 

  • Finney LA, O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    CAS  PubMed  Google Scholar 

  • Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R (2016) Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytol 211:1129–1141

    CAS  PubMed  Google Scholar 

  • Fontanini D, Andreucci A, Castiglione MR, Basile A, Sorbo S, Petraglia A, Degola F, Bellini E, Bruno L, Varotto C, di Toppi LS (2018) The phytochelatin synthase from Nitella mucronata (Charophyta) plays a role in the homeostatic control of iron (II)/(III). Plant Physiol Biochem 127:88–96

    CAS  PubMed  Google Scholar 

  • Foroughi S, Baker AJ, Roessner U, Johnson AA, Bacic A, Callahan DL (2014) Hyperaccumulation of zinc by Noccaea caerulescens results in a cascade of stress responses and changes in the elemental profile. Metallomics 6:1671–1682

    CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frérot H, Petit C, Lefèbvre C, Gruber W, Collin C, Escarré J (2003) Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicaceae). New Phytol 157:643–648

    PubMed  Google Scholar 

  • Frérot H, Faucon MP, Willems G, Godé C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytol 187:355–367

    PubMed  Google Scholar 

  • Frey B, Keller C, Zierold K (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687

    CAS  Google Scholar 

  • Frommer WB, Hummel S, Unseld M, Ninnemann O (1995) Seed and vascular expression of a high affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci 92:12036–12040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimori K, Ohta D (1998a) An Arabidopsis cDNA encoding a bifunctional glutamine amidotransferase/cyclase suppresses the histidine auxotrophy of a Saccharomyces cerevisiae his7 mutant. FEBS Lett 428:229–234

    CAS  PubMed  Google Scholar 

  • Fujimori K, Ohta D (1998b) Isolation and characterization of a histidine biosynthetic gene in Arabidopsis encoding a polypeptide with two separate domains for phosphoribosyl-ATP pyrophosphohydrolase and phosphoribosyl-AMP cyclohydrolase. Plant Physiol 118:275–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimori K, Tada S, Kanai S, Ohta D (1998) Molecular cloning and characterization of the gene encoding N’-[(5′-phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (BBM II) isomerase from Arabidopsis thaliana. Mol Gen Genet 259:216–223

    CAS  PubMed  Google Scholar 

  • Fukuda N, Hokura A, Kitajima N, Terada Y, Saito H, Abe T, Nakai I (2008) Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. J Anal Atom Spectrom 23:1068–1075

    CAS  Google Scholar 

  • Gabrielli R, Mattioni C, Vergnano O (1991) Accumulation mechanisms and heavy metal tolerance of a nickel hyperaccumulator. J Plant Nutr 14:1067–1080

    Google Scholar 

  • Gadapati WR, Macfie SM (2006) Phytochelatins are only partially correlated with Cd-stress in two species of Brassica. Plant Sci 170:471–480

    CAS  Google Scholar 

  • Garcia-Molina A, Andrés-Colás N, Perea-García A, del Valle-Tascón S, Peñarrubia L, Puig S (2011) The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J 65:848–860

    CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    CAS  PubMed  Google Scholar 

  • Gayomba SR, Zhai Z, Jung HI, Vatamaniuk OK (2015) Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front Plant Sci 6: article 716

  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–5

    CAS  PubMed  Google Scholar 

  • Glass DJ (1999) Current market trends in phytoremediation. Int J Phytoremediat 1:1–8

    Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci 100:10118–10123

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-Guerrero M, Argüello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci 105:5992–5997

    PubMed  PubMed Central  Google Scholar 

  • Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136:2523–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    CAS  PubMed  Google Scholar 

  • Grill E, Gekeler W, Winnacker EL, Zenk HH (1986) Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Lett 205:47–50

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci 84:439–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grill E, Löffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) Molecular mechanisms of ion transport in plant cells. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 271–285

    Google Scholar 

  • Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125:164–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    CAS  PubMed  Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013) Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, pp 73–94

    Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127

    CAS  PubMed  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halimaa P, Lin Y-F, Ahonen VH, Blane D, Clemens S, Gyenesei A, Häikiö E, Kärenlampi SO, Laiho A, Aarts MGM, Pursiheimo G-M, Schat H, Schmidt H, Tuomainen MH, Tervahauta AI (2014) Gene expression differences between Noccaea caerulescens ecotypes help indentifying candidate genes for metal phytoremediation. Environ Sci Technol 48:3344–3353

    CAS  PubMed  Google Scholar 

  • Halimaa P, Blande D, Baltzi E, Aarts MGM, Granlund L, Keinänen M, Kärenlampi SO, Kozhevnikova AD, Peräniemi S, Schat H, Seregin IV, Tuomainen M, Tervahauta AL (2019) Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of Noccaea caerulescens. Plant J 97:306–320

    CAS  PubMed  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJM, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    CAS  PubMed  Google Scholar 

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259

    CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    CAS  PubMed  Google Scholar 

  • Harada E, Yamaguchi Y, Koizumi N, Hiroshi S (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J Plant Physiol 159:445–448

    CAS  Google Scholar 

  • Harada E, Sugase K, Namba K, Iwashita T, Murata Y (2007) Structural element responsible for the Fe(III)-phytosiderophore specific transport by HvYS1 transporter in barley. FEBS Lett 581:4298–4302

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23:249–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    CAS  PubMed  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Li J, Zhang H, Ma M (2005) Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Sci 168:309–318

    CAS  Google Scholar 

  • Heath SM, Southworth D, D’Allura JA (1997) Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var. siskiyouense (Brassicaceae) using energy-dispersive X-ray microanalysis. Int J Plant Sci 158:184–188

    CAS  Google Scholar 

  • Heiss S, Schäfer HJ, Haag-Kerwer A, Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39:847–857

    CAS  PubMed  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    CAS  PubMed  Google Scholar 

  • Hell R, Bergmann L (1990) γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180:603–612

    CAS  PubMed  Google Scholar 

  • Herbik A, Koch G, Mock HP, Douchkov D, Czihal A, Thielmann J, Stephan UW, Bäumlein H (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. Eur J Biochem 265:231–239

    CAS  PubMed  Google Scholar 

  • Higuchi K, Kanazawa K, Nishizawa NK, Chino M, Mori S (1994) Purification and characterization of nicotianamine synthase from Fe-deficient barley roots. Plant Soil 165:173–179

    CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirner A, Ladwig L, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirt H, Sommergruber K, Barta A (1990) Effects of cadmium on tobacco: synthesis and regulation of cadmium-binding peptides. Biochem Physiol Pflanz 186:153–163

    CAS  Google Scholar 

  • Hokura A, Onuma R, Kitajima N, Terada Y, Saito H, Abe T, Yoshida S, Nakai I (2006) 2-D X-ray fluorescence imaging of cadmium hyperaccumulating plants by using high-energy synchrotron radiation X-ray microbeam. Chem Lett 35:1246–1247

    CAS  Google Scholar 

  • Homer FA, Morrison RS, Brooks RR, Clemens J, Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138:195–205

    CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthes V, Isaure MP, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65

    CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igamberdiev AU, Eprintsev AT (2016) Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front Plant Sci 7: article 1042

  • Ingle RA (2011) Histidine biosynthesis. The arabidopsis book. American Society of Plant Biologists 9:1–9

    Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66:193–203

    CAS  PubMed  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    CAS  PubMed  Google Scholar 

  • Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta B 61:1242–1252

    Google Scholar 

  • Isaure MP, Huguet S, Meyer CL, Castillo-Michel H, Testemale D, Vantelon D, Saumitou-Laprade P, Verbruggen N, Sarret G (2015) Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. J Exp Bot 66:3201–3214

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    CAS  PubMed  Google Scholar 

  • Jacquart A, Brayner R, Chahine JM, Ha-Duong NT (2017) Cd2+ and Pb2+ complexation by glutathione and the phytochelatins. Chem Biol Interact 267:2–10

    CAS  PubMed  Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    PubMed  Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4: article 279

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412

    CAS  PubMed  Google Scholar 

  • Jemal F, Didierjean L, Ghrir R, Ghorbal MH, Burkard G (1998) Characterization of cadmium binding peptides from pepper (Capsicum annuum). Plant Sci 137:143–154

    CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6:e24476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joho M, Inouhe M, Tohoyama H, Murayama T (1990) A possible role of histidine in a nickel resistant mechanism in Saccharomyces cerevisiae. FEMS Microbiol Lett 66:333–338

    CAS  Google Scholar 

  • Joho M, Ishikawa Y, Kunikane M, Inouhe M, Tohoyama H, Murayama T (1992) The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae. Microbios 71:149–159

    CAS  PubMed  Google Scholar 

  • Juang RH, McCue KF, Ow DW (1993) Two purine biosynthetic enzymes that are required for cadmium tolerance in Schizosaccharomyces pombe utilize cysteine sulfinate in vitro. Arch Biochem Biophys 304:392–401

    CAS  PubMed  Google Scholar 

  • Kachenko AG, Singh B, Bhatia NP, Siegele R (2008) Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthus floribundus subsp. floribundus using micro-PIXE spectroscopy. Nucl Instrum Meth B 266:667–676

    CAS  Google Scholar 

  • Kakei Y, Yamaguchi I, Kobayashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK (2009) A highly sensitive, quick and simple quantification method for nicotianamine and 2′-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol 50:1988–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazemi-Dinan A, Thomaschky S, Stein RJ, Krämer U, Müller C (2014) Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol 202:628–639

    CAS  PubMed  Google Scholar 

  • Keltjens WG, van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126

    CAS  Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten WJ, Brooks RR, Reeves RD, Jaffré A (1980) Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants. Phytochemistry 19:1963–1965

    CAS  Google Scholar 

  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818

    CAS  PubMed  Google Scholar 

  • Kim YO, Kang H, Ahn SJ (2019) Overexpression of phytochelatin synthase AtPCS2 enhances salt tolerance in Arabidopsis thaliana. J Plant Physiol 240:153011

    CAS  PubMed  Google Scholar 

  • Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(γ-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiol 104:1325–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107:515–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Ekkehard Neuhaus H, Trentmann O (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192:393–404

    CAS  PubMed  Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2663–2667

    CAS  Google Scholar 

  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nozoye T, Nishizawa NK (2019) Iron transport and its regulation in plants. Free Radic Biol Med 133:11–20

    CAS  PubMed  Google Scholar 

  • Kochian LV (2000) Molecular physiology of mineral nutrient acquisition, transport, and utilization. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. Rockville, Maryland, pp 1204–1249

    Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    CAS  PubMed  Google Scholar 

  • Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y (1984) Cadystin a and b, major unit peptides comprising cadmium binding peptides induced in a fission yeast: separation, revision of structures and synthesis. Tetrahedron Lett 25:3869–3872

    CAS  Google Scholar 

  • Koren S, Arčon I, Kump P, Nečemer M, Vogel-Mikuš K (2013) Influence of CdCl2 and CdSO4 supplementation on Cd distribution and ligand environment in leaves of the Cd hyperaccumulator Noccaea (Thlaspi) praecox. Plant Soil 370:125–148

    CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    CAS  PubMed  Google Scholar 

  • Kozhevnikova AD, Erlikh NT, Zhukovskaya NV, Obroucheva NV, Ivanov VB, Seregin IV (2014a) Nickel and zinc accumulation, distribution and effects on ruderal plants Lepidium ruderale and Capsella bursa-pastoris. Acta Physiol Plant 36:3291–3305

    CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Erlikh NT, Shevyreva TA, Andreev IM, Verweij R, Schat H (2014b) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519

    CAS  PubMed  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Verweij R, Schat H (2014c) Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens. Plant Signal Behav 9:e29580

    PubMed  PubMed Central  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Gosti F, Schat H (2017) Zinc accumulation and distribution over tissues in Noccaea caerulescens in nature and in hydroponics: a comparison. Plant Soil 411:5–16

    CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Aarts MGM, Schat H (2020) Intra-specific variation in zinc, cadmium, and nickel hypertolerance and hyperaccumulation capacities in Noccaea caerulescens. Plant Soil. https://doi.org/10.1007/s11104-020-04572-7

    Article  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Ann Rev Plant Biol 61:517–534

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JA (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1354

    PubMed  PubMed Central  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    PubMed  Google Scholar 

  • Krężel A, Maret W (2016) The biological inorganic chemistry of zinc ions. Arch Biochem Biophys 611:3–19

    PubMed  PubMed Central  Google Scholar 

  • Kristensen IB, Larsen PO (1974) Azetidine-2-carboxylic acid derivatives from seeds of Fagus silvatica L and a revised structure for nicotianamine. Phytochemistry 13:2791–2798

    CAS  Google Scholar 

  • Kubota H, Sato K, Yamada T, Maitani T (1995) Phytochelatins (class III metallothioneins) and their desglycyl peptides induced by cadmium in normal root cultures of Rubia tinctorum L. Plant Sci 106:157–166

    CAS  Google Scholar 

  • Kubota H, Sato K, Yamada T, Maitani T (2000) Phytochelatin homologs induced in hairy roots of horseradish. Phytochemistry 53:239–245

    CAS  PubMed  Google Scholar 

  • Kühnlenz T, Hofmann C, Uraguchi S, Schmidt H, Schempp S, Weber M, Lahner B, Salt DE, Clemens S (2016) Phytochelatin synthesis promotes leaf Zn accumulation of Arabidopsis thaliana plants grown in soil with adequate Zn supply and is essential for survival on Zn-contaminated soil. Plant Cell Physiol 57:2342–2352

    PubMed  Google Scholar 

  • Kumar RK, Chu HH, Abundis C, Vasques K, Rodriguez DC, Chia JC, Huang R, Vatamaniuk OK, Walker EL (2017) Iron-nicotianamine transporters are required for proper long distance iron signaling. Plant Physiol 175:1254–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    PubMed  PubMed Central  Google Scholar 

  • Küpper H, Mijovilovich A, Götz B, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants (I): characterisation of copper accumulation, speciation and toxicity in Crassula helmsii as a new copper hyperaccumulator. Plant Physiol 151:702–714

    PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB (2014) Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and Root Chip technology. New Phytol 202:198–208

    CAS  PubMed  Google Scholar 

  • Lasat MM, Baker AJ, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    CAS  PubMed  Google Scholar 

  • Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44:769–782

    PubMed  Google Scholar 

  • Lee S, Korban S (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215:689–693

    CAS  PubMed  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochemistry 16:1503–1505

    CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17:1033–1035

    CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YH, Foster J, Chen J, Voll LM, Weber AP, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319

    CAS  PubMed  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim YK, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci 106:22014–22019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H, Nishizawa NK (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873

    CAS  PubMed  Google Scholar 

  • Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4: article 374

  • Leitenmaier B, Stemke A, Meyer-Klaucke W, Küpper H (2009) Characterisation of TcHMA4, a Cd/Zn ATPase purified from roots of the hyperaccumulator plant Thlaspi caerulescens. J Biol Inorg Chem 14:165–168

    Google Scholar 

  • Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271:6509–6517

    CAS  PubMed  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc Natl Acad Sci 94:42–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Iqbal M, Zhang Q, Spelt C, Bliek M, Hakvoort HW, Quattrocchio FM, Koes R, Schat H (2017) Two Silene vulgaris copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in Arabidopsis thaliana. New Phytol 215:1102–1114

    CAS  PubMed  Google Scholar 

  • Liao MT, Hedley MJ, Woolley DJ, Brooks RR, Nichols MA (2000) Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system: II. The role of nicotianamine and histidine in xylem sap copper transport. Plant Soil 223:243–252

    CAS  Google Scholar 

  • Lima AI, Pereira SI, Figueira EM, Caldeira GC, de Matos Caldeira HD (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55:149–162

    CAS  Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    CAS  PubMed  Google Scholar 

  • Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci 96:7098–7103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Gu C, Chen F, Yang D, Wu K, Chen S, Jiang J, Zhang Z (2012) Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl Biochem Biotechnol 166:722–734

    CAS  PubMed  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Nieto-Jacobo MF, Ramırez-Rodrıguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–3

    CAS  PubMed  Google Scholar 

  • Lu L, Tian S, Zhang J, Yang X, Labavitch JM, Webb SM, Latimer M, Brown PH (2013) Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol 198:721–731

    CAS  PubMed  Google Scholar 

  • Lue-Kim H, Rauser WE (1986) Partial characterization of cadmium-binding protein from roots of tomato. Plant Physiol 81:896–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localization of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    CAS  PubMed  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond B Biol Sci 266:2175–2179

    CAS  Google Scholar 

  • Maier T, Yu C, Küllertz G, Clemens S (2003) Localization and functional characterization of metal-binding sites in phytochelatin synthases. Planta 218:300–308

    CAS  PubMed  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mari S, Lebrun M (2005) Metal immobilization: where and how? In: Tamàs MJ, Martinoia E (eds) Topics in current genetics. Molecular biology of metal homeostasis and detoxification. Springer, New York, pp 273–291

    Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    CAS  PubMed  Google Scholar 

  • Marquès L, Cossegal M, Bodin S, Czernic P, Lebrun M (2004) Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol 164:289–295

    PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Elsevier Science, San Diego

    Google Scholar 

  • May MJ, Leaver CJ (1994) Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci 91:10059–10063

    CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, Van Montagu M, Inzé D (1998) Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci 95:12049–12054

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    CAS  PubMed  Google Scholar 

  • McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    CAS  PubMed  Google Scholar 

  • Meharg AA (2005) Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Soil 274:163–174

    CAS  Google Scholar 

  • Mendoza-Cózatl DG, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    PubMed  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    PubMed  PubMed Central  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    PubMed  PubMed Central  Google Scholar 

  • Mendum ML, Gupta SC, Goldsbrough PB (1990) Effect of glutathione on phytochelatin synthesis in tomato cells. Plant Physiol 93:484–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE (2013) Functional analysis of the rice vacuolar zinc transporter OsMTP1. J Exp Bot 64:2871–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot 65:1551–1564

    CAS  PubMed  Google Scholar 

  • Merlot S, de la Torre VS, Hanikenne M (2018) Physiology and molecular biology of trace element hyperaccumulation. In: van der Ent A (ed) Agromining: farming for metals. Springer, Cham, pp 93–116

    Google Scholar 

  • Meuwly P, Thibault P, Rauser WE (1993) γ-Glutamylcysteinylglutamic acid—a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Lett 336:472–476

    CAS  PubMed  Google Scholar 

  • Meuwly P, Thibault P, Schwan AL, Rauser WE (1995) Three families of thiol peptides are induced by cadmium in maize. Plant J 7:391–400

    CAS  PubMed  Google Scholar 

  • Meyer CL, Verbruggen N (2012) The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnol 30:9–14

    Google Scholar 

  • Meyer CL, Kostecka AA, Saumitou-Laprade P, Créach A, Castric V, Pauwels M, Frérot H (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130–142

    CAS  PubMed  Google Scholar 

  • Meyer CL, Peisker D, Courbot M, Craciun AR, Cazalé AC, Desgain D, Schat H, Clemens S, Verbruggen N (2011) Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases. Planta 234:83–95

    CAS  PubMed  Google Scholar 

  • Meyer C-L, Pauwels M, Briset L, Godé C, Salis P, Bourceaux A, Souleman D, Frérot H, Verbruggen N (2016) Potential preadaptation to anthropogenic pollution: evidence from a common quantitative trait locus for zinc and cadmium tolerance in metallicolous and nonmetallicolous accessions of Arabidopsis halleri. New Phytol 212:934–943

    CAS  PubMed  Google Scholar 

  • Milner MJ, Craft E, Yamaji N, Koyama E, Ma JF, Kochian LV (2012) Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytol 195:113–123

    CAS  PubMed  Google Scholar 

  • Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Zambrano MC, Ma JF, Kochian LV (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J 78:398–410

    CAS  PubMed  Google Scholar 

  • Minguzzi C, Vegnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertelonii. Desv Atti Soc Toscana Sci Nat 55:49–74

    CAS  Google Scholar 

  • Mishra S, Mishra A, Küpper H (2017) Protein biochemistry and expression regulation of cadmium/zinc pumping ATPases in the hyperaccumulator plants Arabidopsis halleri and Noccaea caerulescens. Front Plant Sci 8: article 835

  • Mo X, Zhu Q, Li X, Li J, Zeng Q, Rong H, Zhang H, Wu P (2006) The hpa1 mutant of Arabidopsis reveals a crucial role of histidine homeostasis in root meristem maintenance. Plant Physiol 141:1425–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, di Toppi LS (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    CAS  PubMed  Google Scholar 

  • Monsant AC, Wang Y, Tang C (2010) Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil 336:391–404

    CAS  Google Scholar 

  • Monsant AC, Kappen P, Wang Y, Pigram PJ, Baker AJM, Tang C (2011) In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure. Plant Soil 348:167–183

    CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muralla R, Sweeney C, Stepansky A, Leustek T, Meinke D (2007) Genetic dissection of histidine biosynthesis in Arabidopsis. Plant Physiol 144:890–903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)-phytosiderophore in barley roots. Plant J 46:563–572

    CAS  PubMed  Google Scholar 

  • Mustroph A, Zanetti ME, Jang CJ, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci 106:18843–18848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai A, Suzuki K, Ward E, Moyer M, Mano J, Beck J, Tada S, Hashimoto M, Chang J, Ryals J, Scheidegger A, Ohta D (1993) Histidinol dehydrogenase in higher plants. Purification, cloning and expression. In: Murata N (ed) Research in photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 95–98

    Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83–94

    CAS  PubMed  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52:1433–1442

    CAS  PubMed  Google Scholar 

  • Nishida S, Aisu A, Mizuno T (2012) Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis. Plant Signal Behav 7:329–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn-nicotianamine and Fe-2′-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.). Plant Cell Physiol 53:381–390

    CAS  PubMed  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129:1872–1879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noma M, Noguchi M, Tamaki E (1971) A new amino acid, nicotianamine, from tobacco leaves. Tetrahedron Lett 12:2017–2020

    Google Scholar 

  • Nomoto K, Mino Y, Ishida T, Yoshioka H, Ota N, Inoue M, Takagi SI, Takemoto T (1981) X-ray crystal structure of the copper(II) complex of mugineic acid, a naturally occurring metal chelator of graminaceous plants. J Chem Soc Chem Commun 7:338–339

    Google Scholar 

  • Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci 16:395–404

    CAS  PubMed  Google Scholar 

  • Nozoye T (2018) The nicotianamine synthase gene is a useful candidate for improving the nutritional qualities and Fe-deficiency tolerance of various crops. Front Plant Sci 9: article 340

  • Nozoye T, Itai RN, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) Diurnal changes in the expression of genes that participate in phytosiderophore synthesis in rice. Soil Sci Plant Nutr 50:1125–1131

    CAS  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    CAS  PubMed  Google Scholar 

  • Nozoye T, Nakanishi H, Nishizawa NK (2013) Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3. PLoS ONE 8:e62567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014a) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXphi or LL motif causes the disruption of vesicle formation or movement in rice. Plant J 77:246–260

    CAS  PubMed  Google Scholar 

  • Nozoye T, Tsunoda K, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014b) Rice nicotianamine synthase localizes to particular vesicles for proper function. Plant Signal Behav 9:e28660

    PubMed  PubMed Central  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2015) The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem 290:27688–27699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nozoye T, Von Wirén N, Sato Y, Higashiyama T, Nakanishi H, Nishizawa NK (2019) Characterization of the nicotianamine exporter ENA1 in rice. Front Plant Sci 10: article 502

  • Ó′Lochlainn S, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE 6: e17814

  • Ohta D, Fujimori K, Mizutani M, Nakayama Y, Kunpaisal-Hashimoto R, Münzer S, Kozaki A (2000) Molecular cloning and characterization of ATP-phosphoribosyl transferase from Arabidopsis, a key enzyme in the histidine biosynthetic pathway. Plant Physiol 122:907–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oleksiak MF, Churchill GA, Crawford DL (2002) Variation in gene expression within and among natural populations. Nat Genet 32:261–266

    CAS  PubMed  Google Scholar 

  • Oomen RJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MG, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    CAS  PubMed  Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow D (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    CAS  PubMed  Google Scholar 

  • Ouerdane L, Mari S, Czernic P, Lebrun M, Łobiński R (2006) Speciation of non-covalent nickel species in plant tissue extracts by electrospray Q-TOFMS/MS after their isolation by 2D size exclusion-hydrophilic interaction LC (SEC-HILIC) monitored by ICP-MS. J Anal Atom Spectrom 21:676–683

    CAS  Google Scholar 

  • Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    CAS  PubMed  Google Scholar 

  • Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J Biol Chem 277:4747–4754

    CAS  PubMed  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CM, Hindt MN, Schmidt H, Clemens S, Guerinot ML (2013) MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet 9(11):e1003953

    PubMed  PubMed Central  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    CAS  PubMed  Google Scholar 

  • Pauwels M, Frérot H, Bonnin I, Saumitou-Laprade P (2006) A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). J Evolut Biol 19:1838–1850

    CAS  Google Scholar 

  • Pearce DA, Sherman F (1999) Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae. J Bacteriol 181:4774–4779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci 97:4956–4960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrier N, Colin F, Jaffré T, Ambrosi JP, Rose J, Bottero JY (2004) Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. CR Geosci 336:567–577

    CAS  Google Scholar 

  • Persans MW, Yan X, Patnoe J-MML, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Halacsy). Plant Physiol 121:1117–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci 98:9995–10000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persson DP, Chen A, Aarts MGM, Salt DE, Schjoerring JK, Husted S (2016) Multi-element bioimaging of Arabidopsis thaliana roots. Plant Physiol 172:835–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen LN, Marineo S, Mandala S, Davids F, Sewell BT, Ingle RA (2010) The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol 152:1186–1196

    CAS  PubMed  Google Scholar 

  • Pianelli K, Mari S, Marques L, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgenic Res 14:739–748

    CAS  PubMed  Google Scholar 

  • Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47:41–47

    CAS  Google Scholar 

  • Pich A, Scholz G, Stephan UW (1994) Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant Soil 165:189–196

    CAS  Google Scholar 

  • Pich A, Hillmer S, Manteuffel R, Scholz G (1997) First immunohistochemical localization of the endogenous Fe2+-chelator nicotianamine. J Exp Bot 48:759–767

    CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    CAS  PubMed  Google Scholar 

  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8(12):e1003120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    CAS  PubMed  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    CAS  PubMed  Google Scholar 

  • Potocki S, Valensin D, Camponeschi F, Kozlowski H (2013) The extracellular loop of IRT1 ZIP protein—the chosen one for zinc? J Inorg Biochem 127:246–252

    CAS  PubMed  Google Scholar 

  • Puig S (2014) Function and regulation of the plant COPT family of high-affinity copper transport proteins. Adv Bot ID476917. https://doi.org/10.1155/2014/476917

  • Rai UN, Tripathi RD, Gupta M, Chandra P (1995) Induction of phytochelatins under cadmium stress in water lettuce (Pistia stratiotes L.). J Environ Sci Health A 30:2007–2026

    Google Scholar 

  • Rauser WE (1987) Changes in glutathione content of maize seedlings exposed to cadmium. Plant Sci 51:171–175

    CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rauser WE, Meuwly P (1995) Retention of cadmium in roots of maize seedlings (role of complexation by phytochelatins and related thiol peptides). Plant Physiol 109:195–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Biol 49:727–760

    CAS  Google Scholar 

  • Rees JD, Ingle RA, Smith JA (2009) Relative contributions of nine genes in the pathway of histidine biosynthesis to the control of free histidine concentrations in Arabidopsis thaliana. Plant Biotechnol J 7:499–511

    CAS  PubMed  Google Scholar 

  • Reese RN, White CA, Winge DR (1992) Cadmium-sulfide crystallites in Cd-(γEC)nG peptide complexes from tomato. Plant Physiol 98:225–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    PubMed  Google Scholar 

  • Rellán-Álvarez R, Abadía J, Álvarez-Fernández A (2008) Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:1553–1562

    PubMed  Google Scholar 

  • Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JÁ, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010) Identification of a tri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51:91–102

    PubMed  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Hussein MA, Teixeira MC, Athanasiadis A, Sá-Correia I, Duque P (2014) Intron retention in the 5′ UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in Arabidopsis. PLoS Genet 10(5):e1004375

    PubMed  PubMed Central  Google Scholar 

  • Richau KH, Kozhevnikova AD, Seregin IV, Vooijs R, Koevoets PL, Smith JA, Ivanov VB, Schat H (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183:106–116

    CAS  PubMed  Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe 1. Expanded roles for the maize iron–phytosiderophore transporter. Plant Physiol 135:112–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci 97:12356–12360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    PubMed  PubMed Central  Google Scholar 

  • Roux C, Castric V, Pauwels M, Wright SI, Saumitou-Laprade P, Vekemans X (2011) Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation? PLoS ONE 6(11):e26872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph A, Becker R, Scholz G, Prochazka Z, Toman J, Macek T, Herout V (1985) The occurrence of the amino acid nicotianamine in plants and microorganisms—a reinvestigation. Biochem Physiol Pflanz 180:557–563

    CAS  Google Scholar 

  • Rüegsegger A, Brunold C (1992) Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99:428–433

    PubMed  PubMed Central  Google Scholar 

  • Rüegsegger A, Schmutz D, Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93:1579–1584

    PubMed  PubMed Central  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347

    CAS  PubMed  Google Scholar 

  • Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salt DE, Kato N, Krämer U, Smith RD, Raskin I (1999a) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and non-accumulator species of Thlaspi. In: Terry N, Bañuelos GS (ed) Phytoremediation of Contaminated Soil and Water, Chapter 10. CRC Press, Boca Raton, FL, pp 189–199

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999b) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717

    CAS  Google Scholar 

  • Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    PubMed  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann J-L, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frérot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P (2009) Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol 184:581–595

    CAS  PubMed  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    CAS  PubMed  Google Scholar 

  • Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wirén N (2005) A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774

    CAS  PubMed  Google Scholar 

  • Schaaf G, Honsbein A, Meda AR, Kirchner S, Wipf D, von Wirén N (2006) AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J Biol Chem 281:25532–25540

    CAS  PubMed  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37:87–97

    PubMed  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptative heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    CAS  PubMed  Google Scholar 

  • Schaumlöffel D, Ouerdane L, Bouyssiere B, Łobiński R (2003) Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection. J Anal Atom Spectrom 18:120–127

    Google Scholar 

  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S (2013) A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C.Presl) F. K. Meyer. Plant J 73:131–142

    CAS  PubMed  Google Scholar 

  • Scholz G, Becker R, Pich A, Stephan UW (1992) Nicotianamine—a common constituent of strategies I and II of iron acquisition by plants. J Plant Nutr 15:1647–1665

    CAS  Google Scholar 

  • Schuler M, Rellán-Álvarez R, Fink-Straube C, Abadía J, Bauer P (2012) Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell 24:2380–2400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schvartzman MS, Corso M, Fataftah N, Scheepers M, Nouet C, Bosman B, Carnol M, Motte P, Verbruggen N, Hanikenne M (2018) Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri. New Phytol 218:269–282

    CAS  PubMed  Google Scholar 

  • Seligmann H (2003) Cost-minimization of amino acid usage. J Mol Evol 56:151–161

    CAS  PubMed  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55:1–22

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Davydova MA, Bystrova EI, Schat H, Ivanov VB (2007a) Role of root and shoot tissues of excluders and hyperaccumulators in nickel transport and accumulation. Dokl Akad Nauk Biol Sci 415:295–297

    CAS  Google Scholar 

  • Seregin IV, Vooijs R, Kozhevnikova AD, Ivanov VB, Schat H (2007b) Cadmium and lead effects on phytochelatin accumulation in shoots and different parts of the maize root. Dokl Akad Nauk Biol Sci 415:304–306

    CAS  Google Scholar 

  • Seregin IV, Erlikh NT, Kozhevnikova AD (2014) Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens. Russ J Plant Physiol 61:204–214

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Zhukovskaya NV, Schat H (2015) Cadmium tolerance and accumulation in excluder Thlaspi arvense and various accessions of hyperaccumulator Noccaea caerulescens. Russ J Plant Physiol 62:837–846

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Schat H (2019) Comparison of l-histidine effects on nickel translocation into the shoots of different species of the genus Alyssum. Russ J Plant Physiol 66:340–344

    CAS  Google Scholar 

  • Severne BC (1974) Nickel accumulation by Hybanthus floribundus. Nature 248:807–808

    CAS  PubMed  Google Scholar 

  • Severne BC, Brooks RR (1972) A nickel-accumulating plant from Western Australia. Planta 103:91–94

    CAS  PubMed  Google Scholar 

  • Shahzad Z, Gosti F, Frérot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6(4):e1000911

    PubMed  PubMed Central  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell Environ 39:1112–1126

    CAS  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    CAS  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Kumashiro T, Nagata T, Ohata T, Mori S (1989) Biosynthesis of nicotianamine in the suspension cultured cells of tobacco (Nicotiana megalosiphon). Biol Met 2:142–145

    CAS  Google Scholar 

  • Sinclair SA, Krämer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567

    CAS  PubMed  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    CAS  PubMed  Google Scholar 

  • Sooksa-Nguan T, Yakubov B, Kozlovskyy VI, Barkume CM, Howe KJ, Thannhauser TW, Rutzke MA, Hart JJ, Kochian LV, Rea PA, Vatamaniuk OK (2009) Drosophila ABC transporter, DmHMT-1, confers tolerance to cadmium. DmHMT-1 and its yeast homolog, SpHMT-1, are not essential for vacuolar phytochelatin sequestration. J Biol Chem 284:354–362

    CAS  PubMed  Google Scholar 

  • Speiser DM, Ortiz DF, Kreppel L, Scheel G, McDonald G, Ow DW (1992) Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol Cell Biol 12:5301–5310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens JC, Hunt DF, Williams BG (1986) Accumulation of non-protein metal-binding polypeptides (gamma-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J Biol Chem 261:13879–13882

    CAS  PubMed  Google Scholar 

  • Stein RJ, Höreth S, de Melo JR, Syllwasschy L, Lee G, Garbin ML, Clemens S, Krämer U (2017) Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol 213:1274–1286

    CAS  PubMed  Google Scholar 

  • Stepansky A, Leustek T (2006) Histidine biosynthesis in plants. Amino Acids 30:127–142

    CAS  PubMed  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522–529

    CAS  Google Scholar 

  • Stephan UW, Schmidke I, Pich A (1994) Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Plant Soil 165:181–188

    CAS  Google Scholar 

  • Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90

    CAS  Google Scholar 

  • Sterckeman T, Cazes Y, Gonneau C, Sirguey C (2017) Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 418:523–540

    CAS  Google Scholar 

  • Stolt JP, Sneller FE, Bryngelsson T, Lundborg T, Schat H (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49:21–28

    CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    CAS  PubMed  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    CAS  PubMed  Google Scholar 

  • Swire J (2007) Selection on synthesis cost affects interprotein amino acid usage in all three domains of life. J Mol Evol 64:558–571

    CAS  PubMed  Google Scholar 

  • Tada S, Volrath S, Guyer D, Scheidegger A, Ryals J, Ohta D, Ward E (1994) Isolation and characterization of cDNAs encoding imidazoleglycerolphosphate dehydratase from Arabidopsis. Plant Physiol 105:579–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tada S, Hatano M, Nakayama Y, Volrath S, Guyer D, Ward E, Ohta D (1995) Insect cell expression of recombinant imidazoleglycerolphosphate dehydratase of Arabidopsis and wheat and inhibition by triazole herbicides. Plant Physiol 109:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi SI, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tekaia F, Yeramian E (2006) Evolution of proteomes: fundamental signatures and global trends in amino acid compositions. BMC Genomics 7: article 307

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci 97:4991–4996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    CAS  PubMed  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126

    CAS  PubMed  Google Scholar 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolrà RP, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutr 19:1541–1550

    Google Scholar 

  • Trampczynska A, Küpper H, Meyer-Klaucke W, Schmidt H, Clemens S (2010) Nicotianamine forms complexes with Zn(II) in vivo. Metallomics 2:57–66

    CAS  PubMed  Google Scholar 

  • Tsednee M, Yang S-C, Lee D-C, Yeh K-C (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166:839–852

    PubMed  PubMed Central  Google Scholar 

  • Tukendorf A, Rauser WE (1990) Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci 70:155–166

    CAS  Google Scholar 

  • Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using Cd-113-NMR. Planta 221:928–936

    CAS  PubMed  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    CAS  PubMed  Google Scholar 

  • Uotila M, Aioub AAA, Gullner G, Komives T, Brunola C (1994) Induction of glutathione transferase activity in wheat and pea seedlings by cadmium. Acta Biol Hung 45:11–16

    CAS  PubMed  Google Scholar 

  • Uraguchi S, Weber M, Clemens S (2019) Elevated root nicotianamine concentrations are critical for Zn hyperaccumulation across diverse edaphic environments. Plant, Cell Environ 42:2003–2014

    CAS  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marquès L, Pianelli K, Schaumlöffel D, Lebrun M, Łobiński R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography—inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740–2745

    CAS  PubMed  Google Scholar 

  • Vallarino JG, Osorio S (2019) Organic Acids. In: Yahia EM, Carrillo-Lopez A (eds) Postharvest physiology and biochemistry of fruits and vegetables. Woodhead Publishing, UK, pp 207–224

    Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, van Themaat EV, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    PubMed  PubMed Central  Google Scholar 

  • van de Mortel JE, Schat H, Moerland PD, van Themaat EV, van der Ent SJ, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324

    PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • van der Ent A, Baker A, Reeves R, Chaney R, Anderson CWN, Meech J, Erskine P, Simonnot M-O, Vaughan J, Morel J-L, Echevarria G, Fogliani B, Qiu R-L, Mulligan D (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    PubMed  Google Scholar 

  • van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep-UK 7:41861

    Google Scholar 

  • van der Ent A, Vinya R, Erskine PD, Malaisse F, Przybyłowicz WJ, Barnabas AD, Harris HH, Mesjasz-Przybyłowicz J (2020) Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper–cobalt belt in Northern Zambia. Metallomics. https://doi.org/10.1039/c9mt00263d

    Article  PubMed  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1056

    PubMed  PubMed Central  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci 96:7110–7115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-Glutamylcysteine during catalysis. J Biol Chem 279:22449–22460

    CAS  PubMed  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA (2005) CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 280:23684–23690

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    CAS  PubMed  Google Scholar 

  • Verkleij JA, Koevoets P, Van T Riet J, Bank R, Nijdam Y, Ernst WH (1990) Poly (γ‐glutamylcysteinyl) glycines or phytochelatins and their role in cadmium tolerance of Silene vulgaris. Plant Cell Environ 13: 913-921

  • Vernadsky VI (1998) Living matter in the biosphere. The Biosphere. Copernicus, New York, pp 56–60

    Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigani G, Solti Á, Thomine S, Philippar K (2019) Essential and detrimental—an update on intracellular iron trafficking and homeostasis. Plant Cell Physiol 60:1420–1439

    CAS  PubMed  Google Scholar 

  • Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ Exp Bot 77:156–164

    CAS  Google Scholar 

  • Visioli G, Gullì M, Marmiroli N (2014) Noccaea caerulescens populations adapted to grow in metalliferous and non-metalliferous soils: Ni tolerance, accumulation and expression analysis of genes involved in metal homeostasis. Environ Exp Bot 105:10–17

    CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    PubMed  PubMed Central  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1996) Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci 114:11–18

    Google Scholar 

  • Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Simčič J, Pelicon P, Budnar M (2008a) Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721

    PubMed  Google Scholar 

  • Vogel-Mikuš K, Simčič J, Pelicon P, Budnar M, Kump P, Nečemer M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Regvar M (2008b) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496

    PubMed  Google Scholar 

  • Vogel-Mikuš K, Arčon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331:439–451

    Google Scholar 

  • von Wirén N, Marschner H, Römheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol 111:1119–1125

    Google Scholar 

  • von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Google Scholar 

  • Wang FP, Wang XF, Zhang J, Ma F, Hao YJ (2018) MdMYB58 modulates Fe homeostasis by directly binding to the MdMATE43 promoter in plants. Plant Cell Physiol 59:2476–2489

    CAS  PubMed  Google Scholar 

  • Wang K, Ding Y, Cai C, Chen Z, Zhu C (2019) The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol Plant 165:690–700

    CAS  PubMed  Google Scholar 

  • Wanke D, Üner Kolukisaoglu H (2010) An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? Plant Biol 12:15–25

    CAS  PubMed  Google Scholar 

  • Waters BM, Chu HH, DiDonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    CAS  PubMed  Google Scholar 

  • Wei ZG, Wong JW, Zhao HY, Zhang HJ, Li HX, Hu F (2007) Separation and determination of heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea) by size exclusion chromatography and atomic absorption spectrometry. Biol Trace Elem Res 118:146–158

    CAS  PubMed  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JA, Angle JS, Chaney RL, Ginocchio R (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    CAS  PubMed  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen WQ, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    CAS  PubMed  Google Scholar 

  • Wojas S, Clemens S, Hennig J, Skłodowska A, Kopera E, Schat H, Bal W, Antosiewicz DM (2008) Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. J Exp Bot 59:2205–2219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wójcik M, Tukendorf A (1999) Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol Plant 21:99–107

    Google Scholar 

  • Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155

    Google Scholar 

  • Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    CAS  PubMed  Google Scholar 

  • Wongkaew A, Nakamura SI, Suzui N, Yin YG, Ishii S, Kawachi N, Kojima K, Sekimoto H, Yokoyama T, Ohkama-Ohtsu N (2019) Elevated glutathione synthesis in leaves contributes to zinc transport from roots to shoots in Arabidopsis. Plant Sci 283:416–423

    CAS  PubMed  Google Scholar 

  • Wu TY, Gruissem W, Bhullar NK (2018) Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Sci 270:13–22

    CAS  PubMed  Google Scholar 

  • Wycisk K, Kim EJ, Schroeder JI, Krämer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 578:128–134

    CAS  PubMed  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Li T, Yang J, He Z, Lu L, Meng F (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185–195

    CAS  PubMed  Google Scholar 

  • Yen M-R, Tseng Y-H, Saier MH Jr (2001) Maize Yellow Stripe1, an iron-phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiology 147:2881–2883

    CAS  PubMed  Google Scholar 

  • Zayneb C, Imen RH, Walid K, Grubb CD, Bassem K, Franck V, Hafedh M, Amine E (2017) The phytochelatin synthase gene in date palm (Phoenix dactylifera L.): phylogeny, evolution and expression. Ecotoxicol Environ Safety 140:7–17

    CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    CAS  PubMed  Google Scholar 

  • Zhang Z-C, Chen B, Qiu B-S (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant, Cell Environ 33:1248–1255

    CAS  Google Scholar 

  • Zhang J, Zhang M, Song H, Zhao J, Shabala S, Tian S, Yang X (2020) A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2020.104121

    Article  Google Scholar 

  • Zhao FJ, Lombi E, Breedon TM (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    CAS  Google Scholar 

  • Zhao RR, Qu BY, Tong YP, Zou CQ (2019) Iron and zinc accumulation in winter wheat regulated by NICOTIANAMINE SYNTHASE responded to increasing nitrogen levels. J Plant Nutr 19:1–3

    Google Scholar 

  • Zheng L, Yamaji N, Yokosho K, Ma JF (2012) YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. Plant Cell 24:3767–3782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zlobin IE, Kartashov AV, Nosov AV, Fomenkov AA, Kuznetsov VV (2019) The labile zinc pool in plant cells. Funct Plant Biol 46:796–805

    CAS  PubMed  Google Scholar 

  • Zorrig W, Rouached A, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P (2010) Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce. J Plant Physiol 167:1239–1247

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. V.B. Ivanov for the critical discussion of the manuscript. This work was partially supported by grants from the Russian Foundation for Basic Research (RFBR, No. 19-04-00369) and from the international scientific program GDRI LOCOMET (Transport, localization and complexation of metals in hyperaccumulating plants) funded by The National Centre for Scientific Research, France; and partially by the Ministry of Science and Higher Education of the Russian Federation (state assignment No. AAAA-A19-119040290058-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Seregin.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seregin, I.V., Kozhevnikova, A.D. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. Photosynth Res 150, 51–96 (2021). https://doi.org/10.1007/s11120-020-00768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00768-1

Keywords

Navigation