Skip to main content
Log in

Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is a natural trace element, which shifts its action in a relatively narrow concentration range from nutritional role to toxicity. Although it has been well established that in plants chloroplasts are among the primary targets, the mechanism of toxicity on photosynthesis is not well understood. Here, we compared selenate and red-allotrope elemental selenium nanoparticles (red nanoSe) in in vitro tobacco cultures to investigate their effects on the structure and functions of the photosynthetic machinery. Selenate at 10 mg/L concentration retarded plant growth; it also led to a decreased chlorophyll content, accompanied with an increase in the carotenoid-to-chlorophyll ratio. Structural examinations of the photosynthetic machinery, using electron microscopy, small-angle neutron scattering and circular dichroism spectroscopy, revealed significant perturbation in the macro-organization of the pigment-protein complexes and sizeable shrinkage in the repeat distance of granum thylakoid membranes. As shown by chlorophyll a fluorescence transient measurements, these changes in the ultrastructure were associated with a significantly diminished photosystem II activity and a reduced performance of the photosynthetic electron transport, and an enhanced capability of non-photochemical quenching. These changes in the structure and function of the photosynthetic apparatus explain, at least in part, the retarded growth of plantlets in the presence of 10 mg/L selenate. In contrast, red nanoSe, even at 100 mg/L and selenate at 1 mg/L, exerted no negative effect on the growth of plantlets and affected only marginally the thylakoid membrane ultrastructure and the photosynthetic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbulut M, Cakir S (2010) The effect of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166

    Article  CAS  PubMed  Google Scholar 

  • Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayres M, Ayres M Jr, Ayres DL, Santos AS (1998) BioEstat. Versão 1.0, Sociedade Civil Mamirauá, MCT – CNPq. Belém, Pará

  • Babaei A, Ranglová K, Malapascua JR, Masojídek J (2017) The synergistic effect of Selenium (selenite, –SeO3 2−) dose and irradiance intensity in Chlorella cultures. AMB Express 7:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banuelos GS, Lin ZQ (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Saf 62:309–316

    Article  CAS  PubMed  Google Scholar 

  • Banuelos LG, Hermosillo-Cereceres MA, Esteban MS (2011) The importance of selenium biofortification in food crops. Curr Nutr Food Sci 7:181–190

    Article  Google Scholar 

  • Cabanero AI, Madrid Y, Camara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526:51–61

    Article  CAS  Google Scholar 

  • Çiçek N, Oukarroum A, Strasser RJ, Schansker G (2018) Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynth Res 136(3):291–301. https://doi.org/10.1007/s11120-017-0463-y

    Article  CAS  PubMed  Google Scholar 

  • De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:30–35

    Google Scholar 

  • Demmig-Adams B, Garab G, Adams III WW, Govindjee (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, Dordrecht

    Google Scholar 

  • Dernovics M, Stefanka Z, Fodor P (2002) Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal Bioanal Chem 372:473–480

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba A, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Dobrikova AG, Domonkos I, Sozer O, Laczko-Dobos H, Kis M, Parducz A, Gombos Z, Apostolova EL (2013) Effect of partial or complete elimination of light-harvesting complexes on the surface electric properties and the functions of cyanobacterial photosynthetic membranes. Physiol Plant 147:248–260

    Article  CAS  PubMed  Google Scholar 

  • Domokos-Szabolcsy É, Márton L, Sztrik A, Babka B, Prokisch J, Fári M (2012) Accumulation of red elemental nanoparticles and their biological effects in Nicotiana tabacum. Plant Growth Regul 68:525–531

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy É, Abdalla N, Alshaal T, Shalaby T, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510

    Article  CAS  Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Abdalla N, Alshaal T, Shalaby T, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510

    Article  CAS  Google Scholar 

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smits EAH, Domokos-Szabolcsy E (2015) Selenium and its role in higher plants. In: Lichtfouse E et al (eds) Pollutants in buildings, water and living organisms, environmental chemistry for a sustainable world, vol 7. Springer, Cham, pp 235–296. https://doi.org/10.1007/978-3-319-19276-5_6

    Chapter  Google Scholar 

  • Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. Int J Biosci Biochem Bioinform 1:148–152

    Google Scholar 

  • Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54:273–281

    Article  CAS  Google Scholar 

  • Geoffroy L, Gilbin R, Simon O, Floriani M, Adam C, Pradines C, Cournac L, Garnier-Laplace J (2007) Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Aquat Toxicol 2:149–158

    Article  CAS  Google Scholar 

  • Gissel-Nielsen G, Bisbjerg B (1970) The uptake of applied selenium by agricultural plants. Plant Soil 32:382–396

    Article  CAS  Google Scholar 

  • Gojkovic Z, Vílchez C, Torronteras R, Vigara J, Gómez-Jacinto V, Janzer N, Gómez-Ariza J, Márová I, Garbayo I (2014) Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture. Sci World J https://doi.org/10.1155/2014/401265

    Article  Google Scholar 

  • Gussakovsky EE, Barzda V, Shahak Y, Garab G (1997) Irreversible disassembly of chiral macrodomains in thylakoids due to photoinhibition. Photosynth Res 51:119–126

    Article  CAS  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Article  CAS  PubMed  Google Scholar 

  • Hurd-Karrer AM (1935) Factors affecting the absorption of selenium from soils by plants. J Agr Res 50:413–427

    CAS  Google Scholar 

  • Jajoo A, Szabó M, Zsiros O, Garab G (2012) Low pH induced structural reorganization in thylakoid membranes. Biochim Biophys Acta 1817:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff H, Hall C, Wood M, Herbstová M, Tsabari O, Nevo R, Charuvi D, Shimoni E, Reich Z (2011) Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci USA 108:20248–20253

    Article  PubMed  PubMed Central  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Longchamp M, Angeli N, Castec-Roulle M (2013) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362:107–117

    Article  CAS  Google Scholar 

  • Magyar M, Sipka G, Kovács L, Ughy B, Zhu Q, Han G, Špunda V, Lambrev PH, Shen JR, Garab G (2018) Rate-limiting steps in the dark-to-light transition of Photosystem II-revealed by chlorophyll-a fluorescence induction. Sci Rep 8:2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18:20–52

    Article  Google Scholar 

  • Molnárová M, Fargasová A (2009) Se(IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L., Triticum eastivum L.) and dicotyledonae crops (Sinapsis alba L., Brassica napus L.). J Hazard Mater 172:854–861

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nagy G, Kovács L, Ünnep R, Zsiros O, Almásy L, Rosta L, Timmins P, Peters J, Posselt D, Garab G (2013) Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur Phys J E 36:69

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Ünnep R, Zsiros O, Tokutsu R, Takizawa K, Porcar L, Moyet L, Petroutsos D, Garab G, Finazzi G, Minagawa J (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci USA 111:5042–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1989) Affect of selenium on chlorophyll biosynthesis in mung bean seedlings. Phytochemistry 28:3321–3324

    Article  CAS  Google Scholar 

  • Palomo-Siguero M, Lopez-Heras MI, Camara C, Madrid Y (2015) Accumulation and biotransformation of chitosan-modified selenium nanoparticles in exposed Radish (Raphanus stivus). J Anal At Spectrsc 30:137–1244

    Google Scholar 

  • Pilon-Smits EAH, Quinn C (2010) Selenium metabolism in plants. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Plant cell monographs, vol 17. Springer, Berlin, pp 225–241

    Chapter  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Posselt D, Nagy G, Kirkensgaard JJK, Holm JK, Aagaard TH, Timmins P, Retfalvi E, Rosta L, Kovacs L, Garab G (2012) Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes—periodicity and structural flexibility of stroma lamellae. Biochim Biophys Acta 1817:1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1:72–96

    Article  Google Scholar 

  • Saffaryazdi A, Lahouti M, Ganjeali A, Bayat H (2012) Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Not Sci Biol 4(4):95–100

    Article  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706(3):250–261

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 120:43–58

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation—biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–342

    Chapter  Google Scholar 

  • Terry N, Zayed AM, Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Phys Plant Mol Biol 51:401–432

    Article  CAS  Google Scholar 

  • Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth NT, Rai N, Solymosi K, Zsiros O, Schröder W, Garab G, Amerongen H, Horton P, Kovács L (2016) Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim Biophys Acta 1857:1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Ünnep R, Nagy G, Markó M, Garab G (2014a) Monitoring thylakoid ultrastructural changes in vivo using small-angle neutron scattering. Plant Physiol Biochem 81:197–207

    Article  CAS  PubMed  Google Scholar 

  • Ünnep R, Zsiros O, Solymosi K, Kovács L, Lambrev PH, Tóth T, Schweins R, Posselt D, Székely NK, Rosta L, Nagy G, Garab G (2014b) The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim Biophys Acta 1837:1572–1580

    Article  CAS  PubMed  Google Scholar 

  • Valdez Barillas JR, Quinn CF, Freeman JL, Lindblom SD, Fakra SC, Marcus MA, Gilligan TM, Alford ÉR, Wangeline AL, Pilon-Smits EAH (2012) Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol 159:1834–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wijk KJ, Kessler F (2017) Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol 68(1):253–289

    Article  CAS  PubMed  Google Scholar 

  • van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Vítová M, Bišová K, Hlavová M, Zachleder V, Rucki M, Čížková M (2011) Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat Toxicol 102:87–94

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, Chen HM (2003) Forms and distribution of selenium at different depth and among particle size fractions of three. Taiwan Soils Chemosphere 52:585–593

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235

    CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci 101:22–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the “ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities” and by grants from the National Research Development and Innovation Office of Hungary (OTKA KH 124985 to GG and GINOP-2.2.1-15-2017-00051 to MF and OTKA NN 114524 to SZT). Zs L-SZ was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2.-15-2016-00009 ‘ICER’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Domokos-Szabolcsy.

Ethics declarations

Conflict of interest

The authors declare that there is no kind of conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zsiros, O., Nagy, V., Párducz, Á. et al. Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynth Res 139, 449–460 (2019). https://doi.org/10.1007/s11120-018-0599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0599-4

Keywords

Navigation