Skip to main content
Log in

Structurally conserved channels in cyanobacterial and plant photosystem II

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the cyanobacterial photosystem II (PSII), the O4-water chain in the D1 and CP43 proteins, a chain of water molecules that are directly H-bonded to O4 of the Mn4Ca cluster, is linked with a channel that connects the protein bulk surface along with a membrane-extrinsic protein subunit, PsbU (O4-PsbU channel). The cyanobacterial PSII structure also shows that the O1 site of the Mn4Ca cluster has a chain of H-bonded water molecules, which is linked with the channel that proceeds toward the bulk surface via PsbU and PsbV (O1-PsbU/V channel). Membrane-extrinsic protein subunits PsbU and PsbV in cyanobacterial PSII are replaced with PsbP and PsbQ in plant PSII. However, these four proteins have no structural similarity. It remains unknown whether the corresponding channels also exist in plant PSII, because water molecules are not identified in the plant PSII cryo-electron microscopy (cryo-EM) structure. Using the cyanobacterial and plant PSII structures, we analyzed the channels that proceed from the Mn4Ca cluster. The cyanobacterial O4-PsbU and O1-PsbU/V channels were structurally conserved as the channel that proceeds along PsbP toward the protein bulk surface in the plant PSII (O4-PsbP and O1-PsbP channels, respectively). Calculated protonation states indicated that in contrast to the original geometry of the plant cryo-EM structure, protonated PsbP-Lys166 may form a salt-bridge with ionized D1-Glu329 and protonated PsbP-Lys173 may form a salt-bridge with ionized PsbQ-Asp28 near the O1-PsbP channel. The existence of these channels might explain the molecular mechanism of how PsbP can interact with the Mn4Ca cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bashford D, Karplus M (1990) pK a’s of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225

    Article  CAS  PubMed  Google Scholar 

  • Beglov D, Roux B (1997) An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B 101:7821–7826

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  • Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817(1):121–142. doi:10.1016/j.bbabio.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4(2):187–217

    Article  CAS  Google Scholar 

  • Calderone V, Trabucco M, Vujicic A, Battistutta R, Giacometti GM, Andreucci F, Barbato R, Zanotti G (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4(9):900–905. doi:10.1038/sj.embor.embor923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case DA, Darden TA, Cheatham I, T E, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  • Case DA, Babin V, Berryman JT, Betz RM, Cai Q, D.S. Cerutti, Cheatham I, T. E., Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14, University of California, San Francisco

    Google Scholar 

  • Cox N, Messinger J (2013) Reflections on substrate water and dioxygen formation. Biochim Biophys Acta 1827(8–9):1020–1030. doi:10.1016/j.bbabio.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  • Cox N, Pantazis DA, Neese F, Lubitz W (2013) Biological water oxidation. Acc Chem Res 46(7):1588–1596

    Article  CAS  PubMed  Google Scholar 

  • Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle? Basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295

    Article  CAS  Google Scholar 

  • Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16(1–2):3–10

    Article  CAS  PubMed  Google Scholar 

  • Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) Constant-pressure molecular-dynamics simulation: the Langevin piston method. J Chem Phys 103(11):4613–4621. doi:10.1063/1.470648

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Gabdulkhakov A, Guskov A, Broser M, Kern J, Muh F, Saenger W, Zouni A (2009) Probing the accessibility of the Mn4Ca cluster in photosystem II: channels calculation, noble gas derivatization, and cocrystallization with DMSO. Structure 17(9):1223–1234. doi:10.1016/j.str.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  • Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134(17):7442–7449

    Article  CAS  PubMed  Google Scholar 

  • Ghanotakis DF, Topper JN, Babcock GT, Yocum CF (1984a) Water-soluble 17-Kda and 23-Kda polypeptides restore oxygen evolution activity by creating a high-affinity binding-site for Ca2+ on the oxidizing side of photosystem-II. FEBS Lett 170(1):169–173. doi:10.1016/0014-5793(84)81393-9

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Topper JN, Yocum CF (1984b) Structural organization of the oxidizing side of photosystem-II. Exogenous reductants reduce and destroy the Mn-complex in photosystems II membranes depleted of the 17 and 23 Kda. Biochim Biophys Acta 767(3):524–531. doi:10.1016/0005-2728(84)90051-3

    Article  CAS  Google Scholar 

  • Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777(2):140–153

    Article  CAS  PubMed  Google Scholar 

  • Ido K, Kakiuchi S, Uno C, Nishimura T, Fukao Y, Noguchi T, Sato F, Ifuku K (2012) The conserved His-144 in the PsbP protein is important for the interaction between the PsbP N-terminus and the Cyt b559 subunit of photosystem II. J Biol Chem 287(31):26377–26387. doi:10.1074/jbc.M112.385286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K (2014) Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J Biol Chem 289(29):20150–20157. doi:10.1074/jbc.M114.574822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ifuku K, Noguchi T (2016) Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Front Plant Sci 7:84. doi:10.3389/fpls.2016.00084

    Article  PubMed  PubMed Central  Google Scholar 

  • Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep:362–367

  • Ifuku K, Yamamoto Y, Ono TA, Ishihara S, Sato F (2005) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139(3):1175–1184. doi:10.1104/pp.105.068643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue-Kashino N, Kashino Y, Satoh K, Terashima I, Pakrasi HB (2005) PsbU provides a stable architecture for the oxygen-evolving system in cyanobacterial photosystem II. Biochemistry 44(36):12214–12228. doi:10.1021/bi047539k

    Article  CAS  PubMed  Google Scholar 

  • Ishikita H, Knapp E-W (2005) Redox potential of cytochrome c550 in the cyanobacterium Thermosynechococcus elongatus. FEBS Lett 579:3190–3194

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Sawaya MR, Bottin H, Tran KT, Sugiura M, Cascio D, Desbois A, Yeates TO, Kirilovsky D, Boussac A (2003) Structural and EPR characterization of the soluble form of cytochrome c-550 and of the psbV2 gene product from cyanobacterium Thermosynechococcus elongatus. Plant Cell Physiol 44:697–706

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko A, Hirata F (1999) Potential of mean force between two molecular ions in a polar molecular solvent: a study by the three-dimensional reference interaction site model. J Phys Chem B 103:7942–7957

    Article  CAS  Google Scholar 

  • Kubo R, Toda M, Hashitsume N (1991). Statistical Physics II, Springer, Berlin

    Book  Google Scholar 

  • Kulik LV, Epel B, Lubitz W, Messinger J (2007) Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy. J Am Chem Soc 129(44):13421–13435

    Article  CAS  PubMed  Google Scholar 

  • Linke K, Ho FM (2014) Water in Photosystem II: Structural, functional and mechanistic considerations. Biochim Biophys Acta 1837(1):14–32

    Article  CAS  PubMed  Google Scholar 

  • Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A (2010) Three-dimensional molecular theory of solvation coupled with molecular dynamics in amber. J Chem Theory Comput 6:607–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott RL, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  PubMed  Google Scholar 

  • McConnell IL, Grigoryants VM, Scholes CP, Myers WK, Chen PY, Whittaker JW, Brudvig GW (2012) EPR-ENDOR characterization of (17O, 1H, 2H) water in manganese catalase and its relevance to the oxygen-evolving complex of photosystem II. J Am Chem Soc 134(3):1504–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messinger J (2004) Evaluation of different mechanistic proposals for water oxidation in photosynthesis on the basis of Mn4OxCa structures for the catalytic site and spectroscopic data. Phys Chem Chem Phys 6:4764–4771

    Article  CAS  Google Scholar 

  • Murray JW, Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159(2):228–237

    Article  CAS  PubMed  Google Scholar 

  • Nozaki Y, Tanford C (1967) Acid-base titrations in concentrated guanidine hydrochloride. Dissociation constants of the guamidinium ion and of some amino acids. J Am Chem Soc 89(4):736–742

    Article  CAS  PubMed  Google Scholar 

  • Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S (2013) All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J Am Chem Soc 135(42):15670–15673

    Article  CAS  PubMed  Google Scholar 

  • Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, Damborsky J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform 7:316. doi:10.1186/1471-2105-7-316

    Article  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabenstein B, Knapp EW (2001) Calculated pH-dependent population and protonation of carbon-monoxy-myoglobin conformers. Biophys J 80(3):1141–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapatskiy L, Cox N, Savitsky A, Ames WM, Sander J, Nowaczyk MM, Rögner M, Boussac A, Neese F, Messinger J, Lubitz W (2012) Detection of the water-binding sites of the oxygen-evolving complex of photosystem II using W-band 17O electron-electron double resonance-detected NMR spectroscopy. J Am Chem Soc 134(40):16619–16634

    Article  CAS  PubMed  Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta 1503(1–2):210–228

    Article  CAS  PubMed  Google Scholar 

  • Robblee JH, Messinger J, Cinco RM, McFarlane KL, Fernandez C, Pizarro SA, Sauer K, Yachandra VK (2002) The Mn cluster in the S0 state of the oxygen-evolving complex of photosystem II studied by EXAFS spectroscopy: are there three di-µ-oxo-bridged Mn2 moieties in the tetranuclear Mn complex? J Am Chem Soc 124:7459–7471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncel M, Boussac A, Zurita JL, Bottin H, Sugiura M, Kirilovsky D, Ortega JM (2003) Redox properties of the photosystem II cytochromes b559 and c550 in the cyanobacterium Thermosynechococcus elongatus. J Biol Inorg Chem 8:206–216

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  • Saito K, Shen J-R, Ishida T, Ishikita H (2011) Short hydrogen-bond between redox-active tyrosine YZ and D1-His190 in the photosystem II crystal structure. Biochemistry 50:9836–9844

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Rutherford AW, Ishikita H (2015) Energetics of proton release on the first oxidation step in the water-oxidizing enzyme. Nat Commun 6:8488. doi:10.1038/ncomms9488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JR (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48. doi:10.1146/annurev-arplant-050312-120129

    Article  CAS  PubMed  Google Scholar 

  • Shen J-R, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832

    Article  CAS  PubMed  Google Scholar 

  • Sindhikara DJ, Yoshida N, Hirata F (2012) Placevent: an algorithm for prediction of explicit solvent atom distribution. J Comput Chem 33:1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Stuchebrukhov AA (2009) Mechanisms of proton transfer in proteins: localized charge transfer versus delocalized soliton transfer. Phys Rev E Stat Nonlin Soft Matter Phys 79(3 Pt 1):031927

    Article  PubMed  PubMed Central  Google Scholar 

  • Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen JR (2015) Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Article  CAS  PubMed  Google Scholar 

  • Takaoka T, Sakashita N, Saito K, Ishikita H (2016) pK a of a proton-conducting water chain in photosystem II. J Phys Chem Lett 7(10):1925–1932. doi:10.1021/acs.jpclett.6b00656

  • Tanokura M (1983a) 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. I. Microscopic pK values and molar ratios of tautomers in histidine-containing peptides. Biochim Biophys Acta 742(3):576–585

    Article  CAS  PubMed  Google Scholar 

  • Tanokura M (1983b) 1H-NMR study on the tautomerism of the imidazole ring of histidine residues. II. Microenvironments of histidine-12 and histidine-119 of bovine pancreatic ribonuclease A. Biochim Biophys Acta 742(3):586–596

    Article  CAS  PubMed  Google Scholar 

  • Tanokura M (1983c) 1H nuclear magnetic resonance titration curves and microenvironments of aromatic residues in bovine pancreatic ribonuclease A. J Biochem 94(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Tohri A, Dohmae N, Suzuki T, Ohta H, Inoue Y, Enami I (2004) Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II. Eur J Biochem 271(5):962–971

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Ifuku K, Sato F, Noguchi T (2009) FTIR evidence that the PsbP extrinsic protein induces protein conformational changes around the oxygen-evolving Mn cluster in photosystem II. Biochemistry 48(27):6318–6325. doi:10.1021/bi9006308

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Vassiliev S, Zaraiskaya T, Bruce D (2012) Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. Biochim Biophys Acta 1817(9):1671–1678

    Article  CAS  PubMed  Google Scholar 

  • Watanabe HC, Welke K, Sindhikara DJ, Hegemann P, Elstner M (2013) Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J Mol Biol 425(10):1795–1814. doi:10.1016/j.jmb.2013.01.033

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534(7605):69–74. doi:10.1038/nature18020

    Article  CAS  PubMed  Google Scholar 

  • Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182):409–412. doi:10.1126/science.1249375

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124 (2). doi:10.1063/1.2136877

  • Yamanaka S, Isobe H, Kanda K, Saito T, Umena Y, Kawakami K, Shen J-R, Kamiya N, Okumura M, Nakamura H, Yamaguchi K (2011) Possible mechanisms for the O–O bond formation in oxygen evolution reaction at the CaMn4O5(H2O)4 cluster of PSII refined to 1.9 Å X-ray resolution. Chem Phys Lett 511:138–145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by JST CREST, JSPS KAKENHI (JP15H00864, JP16H06560, JP26105012, and JP26711008), Materials Integration for engineering polymers of Cross-ministerial Strategic Innovation Promotion Program (SIP), and Interdisciplinary Computational Science Program in CCS, University of Tsukuba. Theoretical calculations were partly performed using Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ishikita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakashita, N., Watanabe, H.C., Ikeda, T. et al. Structurally conserved channels in cyanobacterial and plant photosystem II. Photosynth Res 133, 75–85 (2017). https://doi.org/10.1007/s11120-017-0347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0347-1

Keywords

Navigation