Skip to main content
Log in

The variability of light-harvesting complexes in aerobic anoxygenic phototrophs

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Light-harvesting capacity was investigated in six species of aerobic anoxygenic phototrophic (AAP) bacteria using absorption spectroscopy, fluorescence emission spectroscopy, and pigment analyses. Aerobically grown AAP cells contained approx. 140–1800 photosynthetic reaction centers per cell, an order of magnitude less than purple non-sulfur bacteria grown semiaerobically. Three of the studied AAP species did not contain outer light-harvesting complexes, and the size of their reaction center core complexes (RC–LH1 core complexes) varied between 29 and 36 bacteriochlorophyll molecules. In AAP species containing accessory antennae, the size was frequently reduced, providing between 5 and 60 additional bacteriochlorophyll molecules. In Roseobacter litoralis, it was found that cells grown at a higher light intensity contained more reaction centers per cell, while the size of the light-harvesting complexes was reduced. The presented results document that AAP species have both the reduced number and size of light-harvesting complexes which is consistent with the auxiliary role of phototrophy in this bacterial group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard J, Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15:209–225

    Article  CAS  PubMed  Google Scholar 

  • Bahatyrova S, Frese R, van der Werf K, Otto C, Hunter N, Oslen J (2004) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy. J Biol Chem 279:21327–21333

    Article  CAS  PubMed  Google Scholar 

  • Biebl H, Wagner-Döbler I (2006) Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: influence of light regiment and starvation. Proc Biochem 41:2153–2159

    Article  CAS  Google Scholar 

  • Boldareva EN, Akimov VN, Boychenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM (2008) Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology 77:206–218

    Article  CAS  Google Scholar 

  • Clayton RK (1963) Toward the isolation of photochemical reaction center in Rhodopseudomonas spheroides. Biochim Biophys Acta 75:312–323

    Article  CAS  PubMed  Google Scholar 

  • Cogdell R, Roszak AW (2014) The purple heart of photosynthesis. Nature 508:196–197

    Article  CAS  PubMed  Google Scholar 

  • Cogdell R, Isaacs N, Hodward T, McLuskey K, Fraser N, Prince S (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181:3869–3879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cogdell RJ, Hashimoto H, Gardiner AT (2004) Purple bacterial light-harvesting complexes: from dreams to structures. Photosynth Res 80:173–179

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68

    Article  CAS  Google Scholar 

  • Cottrell MT, Mannino A, Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol 72:557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deisenhofer J, Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis (Nobel lecture). EMBO J 8:2149–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drews G, Golecki J (1995) Structure, molecular organisation, and biosynthesis of membranes of purple bacteria. In: Madigan MT, Bauer CE, Blankenship RE (eds) Anoxygenic photosynthetic bacteria. Kluwer Acadamic Publishers, Dordrecht, pp 231–257

    Google Scholar 

  • Emerson R, Arnold W (1932) A separation of the reactions in photosynthesis be means of intermittent light. J Gen Physiol 15:391–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279:2063–2068

    Article  CAS  PubMed  Google Scholar 

  • Francke C, Amesz J (1995) The size of the photosynthetic unit in purple bacteria. Photosynth Res 46:347–352

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BM, Spring S, Teeling H, Quast C, Wolf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner FO, Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104:2891–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall A (1995) Purification, characterization and crystallization of a range of Rhodospirillineae pigment-protein complexes. PhD thesis, University of Glasgow, Glasgow, the UK

  • Gerencser L, Lanosi T, Laczko G, Maroti P (2000) Kinetic limitations in turnover of photosynthetic bacterial reaction center protein. Acta Biol Szegediensis 44:45–52

    Google Scholar 

  • Hauruseu D, Koblížek M (2012) The influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78:7414–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Damjanovic A, Ritz T, Shulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95:5935–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karrasch S, Bullough PA, Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14:631–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchman DL, Hanson TE (2013) Bioenergetics of photoheterotrophic bacteria in the oceans. Environ Microbiol Rep 5:188–199

    Article  CAS  PubMed  Google Scholar 

  • Koblížek M, Béjà O, Bidigare RR, Christensen S, Benetiz-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338

    Article  PubMed  Google Scholar 

  • Koblížek M, Mlčoušková J, Kolber Z, Kopecký J (2010) On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192:41–49

    Article  PubMed  Google Scholar 

  • Koblížek M, Janouškovec J, Oborník M, Johnson JH, Ferriera S, Falkowski PG (2011) Genome sequence of the marine photoheterotrophic bacterium Erythrobacter sp. strain NAP1. J Bacteriol 193:5881–5882

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  CAS  PubMed  Google Scholar 

  • Liebetanz R, Hornberger U, Drews G (1991) Organization of the genes coding for the reaction-centre L and M subunits and B870 antenna polypeptides α and β from the aerobic photosynthetic bacterium Erythrobacter species OCH 114. Mol Microbiol 5(1459–1468):3

    Google Scholar 

  • Lien S, Gest H (1973) Regulation of chlorophyll synthesis in photosynthetic bacteria. Bioenergetics 4:423–434

    Article  CAS  Google Scholar 

  • Mašín M, Nedoma J, Pechar L, Koblížek M (2008) Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996

    Article  PubMed  Google Scholar 

  • Niedzwiedzki D, Fuciman M, Frank HA et al (2011) Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochim et Biophys Acta-Bioenergy 1807:518–528

    Article  CAS  Google Scholar 

  • Qian P, Papiz M, Jackson P, Brindley A, Ng I, Olsen J, Dickman M, Bullough P, Hunter C (2013) Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry 52:7575–7585

    Article  CAS  PubMed  Google Scholar 

  • Schumacher A, Drews G (1979) Effects of light intensity on membrane differentiation in Rhodopseudomonas capsulata. Biochim Biophys Acta 547:417–428

    Article  CAS  PubMed  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov. and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145

    Article  Google Scholar 

  • Shimada K, Hayashi H, Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. Arch Microbiol 143:244–247

    Article  CAS  Google Scholar 

  • Shimada K, Yamazaki I, Tamai N, Mimuro M (1990) Excitation-energy flow in a photosynthetic bacterium lacking B850—fast energy-transfer from B806 to B870 in Erythrobacter sp strain OCh 114. Biochim Biophys Acta 1016:266–271

    Article  CAS  Google Scholar 

  • Sieracki ME, Gilg IC, Thier EC, Poulton NJ, Goericke R (2006) Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51:38–46

    Article  Google Scholar 

  • Šlouf V, Fuciman M, Dulebo A, Kaftan D, Koblížek M, Frank H, Polívka T (2013) Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs. J Phys Chem 117:10987–10999

    Google Scholar 

  • Spring S, Lunsdorf H, Fuchs BM, Tindall BJ (2009) The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS ONE 1:e4866

    Article  Google Scholar 

  • Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, Hosoya H, Tokia Y, Kanagawa T, Hanada S (1999) Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Bacteriol 49:449–457

    Article  PubMed  Google Scholar 

  • Takamiya K, Iba K, Okamura K (1987) Reaction center complex from an aerobic photosynthetic bacterium Erythrobacter species OCh 114. Biochim Biophys Acta 890:127–133

    Article  CAS  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  PubMed  Google Scholar 

  • Walz T, Ghosh R (1997) Two-dimensional crystallization of the light-harvesting I reaction centre photounit from Rhodospirillum rubrum. J Mol Biol 265:107–111

    Article  CAS  PubMed  Google Scholar 

  • Yurkov VV, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer Verlag, Dordrecht, pp 31–55

    Chapter  Google Scholar 

  • Yurkov V, Lysenko AM, Gorlenko VM (1991) Hybridization analysis of the classification of bacteriochlorophyll a containing freshwater aerobic bacteria. Mikrobiologiya 60:518–523

    CAS  Google Scholar 

  • Yurkov V, Gad’on N, Angerhofer A, Drews G (1994) Light-harvesting complexes of aerobic bacteriochlorophyll-containing bacteria Roseococcus thiosulfatophilus, RB3 and Erytromicrobium ramosum, E5 and the transfer of excitation energy from carotenoids to bacteriochlorophyll Z. Naturforsch 49:579–586

    CAS  Google Scholar 

Download references

Acknowledgments

This research was also supported by GAČR project P501/12/G055 and the EC-funded project Algatech Plus. The authors are indebted to Dr. Hanno Biebl and Prof. Vladimir Gorlenko for their kind gift of AAP strains, Prof. Neil Hunter for providing the Rba. sphaeroides LH2 def. mutant, and Dr. David Bína for recording the excitation spectra of Rsb. litoralis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Selyanin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyanin, V., Hauruseu, D. & Koblížek, M. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynth Res 128, 35–43 (2016). https://doi.org/10.1007/s11120-015-0197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0197-7

Keywords

Navigation