Skip to main content

Advertisement

Log in

Biochemical approaches to C4 photosynthesis evolution studies: the case of malic enzymes decarboxylases

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

C4 photosynthesis enables the capture of atmospheric CO2 and its concentration at the site of RuBisCO, thus counteracting the negative effects of low atmospheric levels of CO2 and high atmospheric levels of O2 (21 %) on photosynthesis. The evolution of this complex syndrome was a multistep process. It did not occur by simply recruiting pre-exiting components of the pathway from C3 ancestors which were already optimized for C4 function. Rather it involved modifications in the kinetics and regulatory properties of pre-existing isoforms of non-photosynthetic enzymes in C3 plants. Thus, biochemical studies aimed at elucidating the functional adaptations of these enzymes are central to the development of an integrative view of the C4 mechanism. In the present review, the most important biochemical approaches that we currently use to understand the evolution of the C4 isoforms of malic enzyme are summarized. It is expected that this information will help in the rational design of the best decarboxylation processes to provide CO2 for RuBisCO in engineering C3 species to perform C4 photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez CE, Detarsio E, Moreno S, Andreo CS, Drincovich MF (2012) Functional characterization of residues involved in redox modulation in maize photosynthetic NADP-malic enzyme activity. Plant Cell Physiol 53:1144–1153. doi:10.1093/pcp/pcs059

    Article  PubMed  CAS  Google Scholar 

  • Alvarez CE, Saigo M, Margarit E, Andreo CS, Drincovich MF (2013) Kinetics and functional diversity among the five members of the NADP-malic enzyme family from Zea mays, a C4 species. Photosynth Res 115:65–80. doi:10.1007/s11120-013-9839-9

    Article  PubMed  CAS  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Fernie AR (2011) Fumarate: multiple functions of a simple metabolite. Phytochemistry 72:838–843. doi:10.1016/j.phytochem.2011.02.028

    Article  Google Scholar 

  • Arias CL, Andreo CS, Drincovich MF, Gerrard Wheeler MC (2012) Fumarate and cytosolic pH as modulators of the synthesis or consumption of C4 organic acids through NADP-malic enzyme in Arabidopsis thaliana. Plant Mol Biol 81:297–307

    Article  PubMed  Google Scholar 

  • Bauwe H (1986) An efficient method for the determination of Km values for HCO3 of phoaphoenolpyruvate carboxylase. Planta 169:356–360. doi:10.1007/BF00392131

    Article  CAS  Google Scholar 

  • Bauwe H (2010) Photorespiration—the bridge to C4 photosynthesis. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Heidelberg, pp 81–108

    Chapter  Google Scholar 

  • Berry IM, Dym O, Esnouf RM, Harlos K, Meged R, Perrakis A, Sussman JL, Walter TS, Wilson J, Messerschmidt A (2006) SPINE high-throughput crystallization, crystal imaging and recognition techniques: current state, performance analysis, new technologies and future aspects. Acta Crystallogr D 62:1137–1149. doi:10.1107/S090744490602943X

    Article  PubMed  Google Scholar 

  • Bläsing OE, Westhoff P, Svensson P (2000) Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J Biol Chem 275:27917–27923

    PubMed  Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722. doi:10.1016/0006-291X(71)90475-X

    Article  PubMed  CAS  Google Scholar 

  • Chang GG, Tong L (2003) Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42:12721–12733. doi:10.1021/bi035251

    Article  PubMed  CAS  Google Scholar 

  • Chastain CJ, Thompson BJ, Chollet R (1996) Maize recombinant C4-pyruvate, orthophosphate dikinase: expression in Escherichia coli, partial purification, and characterization of the phosphorylatable protein. Photosynth Res 49(1):83–89

    Article  CAS  Google Scholar 

  • Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen THT (2011) Functional evolution of C4 pyruvate, orthophosphate dikinase. J Exp Bot 62:3083–3091. doi:10.1093/jxb/err058

    Article  PubMed  CAS  Google Scholar 

  • Christin P-A, Osborne CP (2013) The recurrent assembly of C4 photosynthesis, an evolutionary tale. Photosynth Res. doi:10.1007/s11120-013-9852-z

  • Coleman DE, Jagannatha Rao GS, Goldsmith EJ, Cook PF, Harris BG (2002) Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 A resolution. Biochemistry 41:6928–6938. doi:10.1074/jbc.M305145200

    Article  PubMed  CAS  Google Scholar 

  • Demain AL, Vaishnav L (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306. doi:10.1016/j.biotechadv.2009.01.008

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Gerrard Wheeler MC, Campos Bermúdez VA, Andreo CS, Drincovich MF (2003) Maize C4 NADP-malic enzyme. Expression in Escherichia coli and characterization of site-direct mutants at the putative nucleotide-binding sites. J Biol Chem 278:13757–13764. doi:10.1074/jbc.M212530200

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Andreo CS, Drincovich MF (2004) Basic residues play key roles in catalysis and NADP+-specificity in maize (Zea mays L.) photosynthetic NADP+-dependent malic enzyme. Biochem J 382:1025–1030. doi:10.1042/BJ20040594

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Álvarez CE, Saigo M, Andreo CS, Drincovich MF (2007) Identification of domains involved in tetramerization and malate inhibition of maize C4 NADP-malic enzyme. J Biol Chem 282:6053–6060. doi:10.1074/jbc.M609436200

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Maurino VG, Alvarez CE, Muller GL, Andreo CS, Drincovich MF (2008) Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and young root. Plant Mol Biol 68:355–367. doi:10.1007/s11103-008-9375-8

    Article  PubMed  CAS  Google Scholar 

  • Dixon M, Webb EC (1979) Enzymes, 3rd edn. Academic Press, New York

    Google Scholar 

  • Dong LY, Masuda T, Kawamura T, Hata S, Izui K (1998) Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme. Plant Cell Physiol 39:865–873

    Article  PubMed  CAS  Google Scholar 

  • Drincovich MF, Iglesias AA, Andreo CS (1991) Interaction of divalent metal ions with the NADP-malic enzyme from maize leaves. Physiol Plantarum 81:462–466. doi:10.1111/j.1399-3054.1991.tb05085.x

    Article  CAS  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS, Franceschi V, Edwards GE, Ku MSB (1998) Evolution of C4 photosynthesis in Flaveria species: isoforms of NADP-malic enzyme. Plant Physiol 117:733–744. doi:10.1104/pp.117.3.733

    Article  PubMed  CAS  Google Scholar 

  • Drincovich MF, Lara M, Maurino VG, Andreo C (2010) C4 decarboxylases. Different solutions for the same biochemical problem, the provision of CO2 in the bundle sheath cells. In: Raghavendra A, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Heidelberg, pp 277–300

    Chapter  Google Scholar 

  • Endo T, Mihara Y, Furumoto T, Matsumura H, Kai Y, Izui K (2008) Maize C4-form phosphoenolpyruvate carboxylase engineered to be functional in C3 plants: mutations for diminished sensitivity to feedback inhibitors and for increased substrate affinity. J Exp Bot 59(7):1811–1818. doi:10.1093/jxb/ern018

    Article  PubMed  CAS  Google Scholar 

  • Engelmann S, Bläsing OE, Gowik U, Svensson P, Westhoff P (2003) Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria—a gradual increase from C3 to C4 characteristics. Planta 217:717–725. doi:10.1007/s00425-003-1045-0

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70:828–832. doi:10.1016/j.phytochem.2009.04.023

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Arbinger B, Kammerer B, Busch C, Brink S, Wallmeier H, Sauer N, Eckerskorn C, Flügge U (1994) Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3- and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate. Plant J 5:215–226. doi:10.1046/j.1365-313X.1994.05020215.x

    Article  PubMed  CAS  Google Scholar 

  • Furumoto T, Hata S, Izui K (1999) cDNA cloning and characterization of maize phosphoenolpyruvate carboxykinase, a bundle sheath cell-specific enzyme. Plant Mol Biol 41:301–303

    Article  PubMed  CAS  Google Scholar 

  • Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Braütigam A, Weber APM, Izui K (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476:472–475. doi:10.1038/nature10250

    Article  PubMed  CAS  Google Scholar 

  • Gerrard Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flügge U, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51. doi:10.1104/pp.105.065953.1

    Article  Google Scholar 

  • Gerrard Wheeler M, Arias C, Tronconi M, Maurino VG, Flugge U, Andreo CS, Drincovich MF (2008) Arabidopsis thaliana NADP-malic enzyme isoforms: high degree identity but clearly distinct properties. Plant Mol Biol 67:231–242. doi:10.1007/s11103-008-9313-9

    Article  CAS  Google Scholar 

  • Gerrard Wheeler MC, Arias CL, Maurino VG, Andreo CS, Drincovich MF (2009) Identification of domains involved in the allosteric regulation of cytosolic Arabidopsis thaliana NADP-malic enzymes. FEBS J 276:5665–5677. doi:10.1111/j.1742-4658.2009.07258.x

    Article  PubMed  Google Scholar 

  • Gowik U, Westhoff P (2010) C4-phosphoenolpyruvate carboxylase. In: Raghavendra A, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Heidelberg, pp 257–275

    Chapter  Google Scholar 

  • Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155:56–63. doi:10.1104/pp.110.165308

    Article  PubMed  CAS  Google Scholar 

  • Gräslund S et al (2008) Protein production and purification. Nat Methods 5(2):135–146. doi:10.1038/nmeth.f.202

    Article  PubMed  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106

    Article  CAS  Google Scholar 

  • Hatch MD (1992) C4 photosynthesis: an unlikely process full of surprises. Plant Cell Physiol 33:333–342

    CAS  Google Scholar 

  • Haüsler RE, Hirsch HJ, Kreuzaler F, Peterhansel C (2002) Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot 53:591–607

    Article  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363. doi:10.1111/j.1365-313X.2007.03052.x

    Article  PubMed  CAS  Google Scholar 

  • Kim DJ, Smith SM (1994) Molecular cloning of cucumber phosphoenolpyruvate carboxykinase and developmental regulation of gene expression. Plant Mol Biol 26(1):423–434

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, Gerick F, Thornton JM (2009) The structural basis of allosteric regulation in proteins. FEBS Lett 583:1692–1698. doi:10.1016/j.febslet.2009.03.019

    Article  PubMed  CAS  Google Scholar 

  • Leegood RC, Walker RP (2003) Regulation and roles of phosphoenolpyruvate carboxykinase in plants. Arch Biochem Biophys 414:204–210. doi:10.1016/S0003-9861(03)00093-6

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS, Leavis PC (1978) Solute quenching of protein fluorescence. Methods Enzymol 49:222–236

    Article  PubMed  CAS  Google Scholar 

  • Lorimer G (1981) The carboxylation and oxygenation of ribulose 1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu Rev Plant Physiol 32:349–383

    Article  CAS  Google Scholar 

  • Ludwig M (2013) Evolution of the C4 photosynthetic pathway: events at the cellular and molecular levels. Photosynth Res. doi:10.1007/s11120-013-9853-y

  • Maurino VG, Gerrard Wheeler MC, Andreo CS, Drincovich MF (2009) Redundancy is sometimes seen only by the uncritical: does Arabidopsis need six malic enzyme isoforms? Plant Sci 176:715–721. doi:10.1016/j.plantsci.2009.02.012

    Article  CAS  Google Scholar 

  • McPherson A (2004) Introduction to protein crystallization. Methods 34:254–265. doi:10.1016/j.ymeth.2004.03.019

    Article  PubMed  CAS  Google Scholar 

  • Minor DL (2007) The neurobiologist’s guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Neuron 54:511–533. doi:10.1016/j.neuron.2007.04.02

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Masumoto C, Miyazawa S-I, Fukayama H (2011) Lessons from engineering a single-cell C4 photosynthetic pathway into rice. J Exp Bot 62:3021–3029. doi:10.1093/jxb/err023

    Article  PubMed  CAS  Google Scholar 

  • Müller GL, Drincovich MF, Andreo CS, Lara MV (2008) Nicotiana tabacum NADP-malic enzyme: cloning, characterization and analysis of biological role. Plant Cell Physiol 49:469–480. doi:10.1093/pcp/pcn022

    Article  PubMed  Google Scholar 

  • Nimmo HG (2003) Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Biochem Biophys 414:189–196. http://www.ncbi.nlm.nih.gov/pubmed/12781770

    Google Scholar 

  • Peterhansel C (2011) Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants. J Exp Bot 62:3011–3019. doi:10.1093/jxb/err027

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Zhu X-G (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000. doi:10.1093/jxb/err179

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-042811-105511

    PubMed  Google Scholar 

  • Saigo M, Bologna F, Maurino VG, Detarsio E, Andreo CS, Drincovich MF (2004) Maize recombinant non-C4 NADP-malic enzyme: a novel dimeric malic enzyme with high specific activity. Plant Mol Biol 55:97–107. doi:10.1007/s11103-004-0472-z

    Article  PubMed  CAS  Google Scholar 

  • Saigo M, Alvarez CE, Andreo CS, Drincovich MF (2013) Plastidial NADP-malic enzymes from grasses: unraveling the way to the C4 specific isoforms. Plant Physiol Biochem 63:39–48. doi:10.1016/j.plaphy.2012.11.009

    Article  PubMed  CAS  Google Scholar 

  • Schimerlik MI, Cleland WW (1977) Inhibition and alternate-substrate studies on the mechanism of malic enzyme. Biochemistry 16:565–570

    Article  PubMed  CAS  Google Scholar 

  • Segel IH (1994) Cálculos de Bioquímica. Acribia Editorial, Zaragoza

    Google Scholar 

  • Spampinato CP, Andreo CS (1995) Kinetic mechanism of NADP-malic enzyme from maize leaves. Photosynth Res 43:1–9. doi:10.1007/BF00029456

    Article  CAS  Google Scholar 

  • Svensson P, Bläsing OE, Westhoff P (2003) Evolution of C4 phosphoenolpyruvate carboxylase. Arch Biochem Biophys 414:180–188. doi:10.1016/S0003-9861(03)00165-6

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Terada A, Kotera M, Ohshima K, Furumoto T, Matsumura H, Kai Y, Izui K (2005) Maize phosphoenolpyruvate carboxylase. Mutations at the putative binding site for glucose-6-phosphate caused desensitization and abolished responsiveness to regulatory phosphorylation. J Biol Chem 280:11798–11806. doi:10.1074/jbc.M408768200

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Sugiyama T (1996) Isolation, characterization and expression of cDNA clones encoding a mitochondrial malate transporter from Panicum miliaceum L. Plant Mol Biol 30:51–64

    Article  PubMed  CAS  Google Scholar 

  • Tronconi MA, Fahnenstich H, Gerrard Wheeler MC, Andreo CS, Flugge U-I, Drincovich MF, Maurino VG (2008) Arabidopsis thaliana NAD-malic enzyme functions as a homo- and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol 146:1540–1552. doi:10.1104/pp.107.114975

    Article  PubMed  CAS  Google Scholar 

  • Tronconi MA, Maurino VG, Andreo CS, Drincovich MF (2010a) Three different and tissue-specific NAD-malic enzyme generated by alternative subunit association in Arabidopsis thaliana. J Biol Chem 285:11870–11879. doi:10.1074/jbc.M109.097477

    Article  PubMed  CAS  Google Scholar 

  • Tronconi MA, Gerrard Wheeler MC, Maurino VG, Drincovich MF, Andreo CS (2010b) NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control. Biochem J 430:295–303. doi:10.1042/BJ20100497

    Article  PubMed  CAS  Google Scholar 

  • Tronconi MA, Gerrard Wheeler MC, Drincovich MF, Andreo CS (2012) Differential fumarate binding to Arabidopsis NAD+-malic enzymes 1 and -2 produces an opposite activity modulation. Biochimie 94:1421–1430. doi:10.1016/j.biochi.2012.03.017

    Article  PubMed  CAS  Google Scholar 

  • Walker DA, Edwards GE (1983) C3, C4: mechanisms, and cellular and environmental regulation of photosynthesis. Blackwell, Oxford

    Google Scholar 

  • Walker RP, Chen Z-H, Acheson RM, Leegood RC (2002) Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C4 plant, Guinea grass. Plant Physiol 128:165–172

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Gowik U, Tang H, Bowers JE, Westhoff P, Paterson AH (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10:R68. doi:10.1186/gb-2009-10-6-r68

    Article  PubMed  Google Scholar 

  • Wells JA (1991) Systematic mutational analyses of protein–protein interfaces. Methods Enzymol 202:390–411. doi:10.1016/0076-6879(91)02020-A

    Article  PubMed  CAS  Google Scholar 

  • Williams BP, Aubry S, Hibberd JM (2012) Molecular evolution of genes recruited into C4 photosynthesis. Trends Plant Sci 17:213–220. doi:10.1016/j.tplants.2012.01.008

    Article  PubMed  CAS  Google Scholar 

  • Wilson WW (2003) Light scattering as a diagnostic for protein crystal growth—a practical approach. J Struct Biol 142:56–65. doi:10.1016/S1047-8477

    Article  PubMed  Google Scholar 

  • Xu Y, Bhargava G, Wu H, Loeber G, Tong L (1999) Crystal structure of human mitochondrial NAD(P)-dependent malic enzyme: a new class of oxidative decarboxylases. Structure 7:877–889. doi:10.1016/S0969-2126(99)80115-4

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Lanks CW, Tong L (2002) Molecular mechanism for the regulation of human mitochondrial NAD(P)-dependent malic enzyme by ATP and fumarate. Structure 10:951–960. doi:10.1016/S0969-2126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CSA, MFD, MS, MGW and MAT are members of the Researcher Career of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and CEA is a fellow of the same institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos S. Andreo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11120_2013_9879_MOESM1_ESM.tiff

Supplemental Fig. 1 Protein design using DNA technology. a Site-directed mutagenesis. For an amino acid replacement, primers that harbour a mismatch and match in an internal region of cDNA template introduce the mutation in a PCR cycle generating a modified DNA fragment. Then, in a second PCR cycle the DNA generated is used as ‘large primer’ to obtain the modified full cDNA. b Chimeric protein synthesis. This strategy involves the interchange of regions or domains between two parental proteins. For this, it is necessary to identify the conserved recognition sites for restriction enzymes (REs) on the cDNAs that encode the parental proteins. Thus, both cDNA are digested with the REs, the products are purified and put together under ligation conditions. Usually, one of the cDNA lacks the recognition sequence for the RE so it is first introduced by site-directed mutagenesis as was described. c Protein co-expression. Western blot, using a mixture of antibodies against A. thaliana NADME1 and NAD-ME2, on fractions from purification steps from E. coli BL21 cells co-transformed with pET32-NAD-ME1 and pET29-NAD-ME2 (lanes 1–3) or E. coli BL21 cells transformed with pET29-NAD-ME2 (lanes 5–7). Lanes 1 and 5, E. coli crude extract after induction; lanes 2 and 6, last Ni-NTA acid column fraction wash; lanes 3 and 7, elute fraction. Purified NAD-ME1 fusion protein (80 kDa) was loaded in lane 4 (Adapted from Tronconi et al. 2010a). The estimated molecular weight of mature NAD-ME2 is 58 kDa. Supplementary material 1 (TIFF 1503 kb)

11120_2013_9879_MOESM2_ESM.tiff

Supplemental Fig. 2 Methodological approach for the study of C4 NADP-malic enzyme evolution. The biochemical characterization of an enzyme requires the coordinated combination of different analytical and methodological blocks: Recombinant proteins, Kinetics, Regulation and Structure. The scheme of the working flow for the study of ZmC4-NADP-ME is presented as an example. This summarizes the works described in Detarsio et al. (2007); Alvarez et al. (2012) and Saigo et al. (2013). Supplementary material 2 (TIFF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saigo, M., Tronconi, M.A., Gerrard Wheeler, M.C. et al. Biochemical approaches to C4 photosynthesis evolution studies: the case of malic enzymes decarboxylases. Photosynth Res 117, 177–187 (2013). https://doi.org/10.1007/s11120-013-9879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9879-1

Keywords

Navigation