Skip to main content
Log in

Getting the most out of natural variation in C4 photosynthesis

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

C4 photosynthesis is a complex trait that has a high degree of natural variation, involving anatomical and biochemical changes relative to the ancestral C3 state. It has evolved at least 66 times across a variety of lineages and the evolutionary route from C3 to C4 is likely conserved but not necessarily genetically identical. As such, a variety of C4 species are needed to identify what is fundamental to the C4 evolutionary process in a global context. In order to identify the genetic components of C4 form and function, a number of species are used as genetic models. These include Zea mays (maize), Sorghum bicolor (sorghum), Setaria viridis (Setaria), Flaveria bidentis, and Cleome gynandra. Each of these species has different benefits and challenges associated with its use as a model organism. Here, we propose that RNA profiling of a large sampling of C4, C3–C4, and C3 species, from as many lineages as possible, will allow identification of candidate genes necessary and sufficient to confer C4 anatomy and/or biochemistry. Furthermore, C4 model species will play a critical role in the functional characterization of these candidate genes and identification of their regulatory elements, by providing a platform for transformation and through the use of gene expression profiles in mesophyll and bundle sheath cells and along the leaf developmental gradient. Efforts should be made to sequence the genomes of F. bidentis and C. gynandra and to develop congeneric C3 species as genetic models for comparative studies. In combination, such resources would facilitate discovery of common and unique C4 regulatory mechanisms across genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akyildiz M, Gowik U, Engelmann S, Koczor M, Streubel M, Westhoff P (2007) Evolution and function of a cis-regulatory module for mesophyll-specific gene expression in the C4 dicot Flaveria trinervia. Plant Cell 19(11):3391–3402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    CAS  PubMed  Google Scholar 

  • Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15(12):1632–1642

    CAS  PubMed  Google Scholar 

  • Bouton JH, Brown RH, Byrd GT, Sharkey TD (1990) Inheritance of the reversal of O2 response of photosynthesis in a Flaveria linearis mutant. Plant Physiol 92(1):186–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP (2011) An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155(1):142–156

    PubMed Central  PubMed  Google Scholar 

  • Brown HR, Bouton JH (1993) Physiology and genetics of interspecific hybrids between photosynthetic types. Annu Rev Plant Physiol Plant Mol Biol 44:435–456

    Google Scholar 

  • Brown RH, Byrd GT (1993) Estimation of bundle sheath cell conductance in C4 species and O2 insensitivity of photosynthesis. Plant Physiol 103(4):1183–1188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown NJ, Parsley K, Hibberd JM (2005) The future of C4 research–maize, Flaveria or Cleome? Trends Plant Sci 10(5):215–221

    CAS  PubMed  Google Scholar 

  • Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ, Kajala K, Hibberd JM (2011) Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science 331(6023):1436–1439

    CAS  PubMed  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22(8):2537–2544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byrt CS, Grof CP, Furbank RT (2011) C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53(2):120–135

    CAS  PubMed  Google Scholar 

  • Cameron RG, Bassett CL, Bouton JH, Brown RH (1989) Transfer of C4 photosynthetic characters through hybridization of Flaveria species. Plant Physiol 90(4):1538–1545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13(8):415–420

    CAS  PubMed  Google Scholar 

  • Chang YM, Liu WY, Shih AC, Shen MN, Lu CH, Lu MY, Yang HW, Wang TY, Chen SC, Chen SM, Li WH, Ku MS (2012) Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160(1):165–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chitty JA, Furbank RT, Marshall JS, Chen Z, Taylor WC (1994) Genetic transformation of the C4 plant Flaveria bidentis. Plant J 6(6):949–956

    CAS  Google Scholar 

  • Covshoff S, Hibberd JM (2012) Integrating C4 photosynthesis into C3 crops to increase yield potential. Curr Opin Biotechnol 23(2):209–214

    CAS  PubMed  Google Scholar 

  • Covshoff S, Majeran W, Liu P, Kolkman JM, van Wijk KJ, Brutnell TP (2008) Deregulation of maize C4 photosynthetic development in a mesophyll cell-defective mutant. Plant Physiol 146(4):1469–1481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Covshoff S, Furbank RT, Leegood RC, Hibberd JM (2013) Leaf rolling allows quantification of mRNA abundance in mesophyll cells of sorghum. J Exp Bot 64(3):807–813

    CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149(1):137–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards GE, Voznesenskaya EV (2011) C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra AS, Sage RF (eds) Photosynthesis and related CO2 concentrating mechanisms. Advances in Photosynthesis Research. Kluwer Academic Publishers, Dordrecht, pp 29–60

    Google Scholar 

  • Engelmann S, Zogel C, Koczor M, Schlue U, Streubel M, Westhoff P (2008) Evolution of the C4 phosphoenolpyruvate carboxylase promoter of the C4 species Flaveria trinervia: the role of the proximal promoter region. BMC Plant Biol 8:4

    Google Scholar 

  • Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ (2010) Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol 152(3):1219–1250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62(9):3103–3108

    CAS  PubMed  Google Scholar 

  • Furbank RT, Chitty JA, von Caemmerer S, Jenkins C (1996) Antisense RNA inhibition of RbcS gene expression reduces Rubisco level and photosynthesis in the C4 plant Flaveria bidentis. Plant Physiol 111(3):725–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furumoto T, Hata S, Izui K (2000) Isolation and characterization of cDNAs for differentially accumulated transcripts between mesophyll cells and bundle sheath strands of maize leaves. Plant Cell Physiol 41(11):1200–1209

    CAS  PubMed  Google Scholar 

  • Furumoto T, Izui K, Quinn V, Furbank RT, von Caemmerer S (2007) Phosphorylation of phosphoenolpyruvate carboxylase is not essential for high photosynthetic rates in the C4 species Flaveria bidentis. Plant Physiol 144(4):1936–1945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, Weber AP, Izui K (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476(7361):472–475

    CAS  PubMed  Google Scholar 

  • Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155(1):56–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gowik U, Bräutigam A, Weber KL, Weber AP, Westhoff P (2011) Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 23(6):2087–2105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106

    CAS  Google Scholar 

  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenerg 27(1):21–30

    Google Scholar 

  • Hibberd JM, Covshoff S (2010) The regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol 61:181–207

    CAS  PubMed  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11(2):228–231

    CAS  PubMed  Google Scholar 

  • Holaday AS, Brown RH, Bartlett JM, Sandlin EA, Jackson RC (1988) Enzymic and photosynthetic characteristics of reciprocal F1 hybrids of Flaveria pringlei (C3) and Flaveria brownii (C4-like species). Plant Physiol 87(2):484–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber WE, Brown RH, Bouton JH, Sternberg LO (1989) CO2 exchange, cytogenetics, and leaf anatomy of hybrids between photosynthetically distinct Flaveria species. Plant Physiol 89(3):839–844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iltis HH, Cochrane TS (2007) Studies in the Cleomaceae V: a new genus and ten new combinations for the flora of North America. Novon 17(4):447–451

    Google Scholar 

  • Jacobs B, Engelmann S, Westhoff P, Gowik U (2008) Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria: determinants for high tolerance towards the inhibitor l-malate. Plant Cell Environ 31(6):793–803

    CAS  PubMed  Google Scholar 

  • Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M, Zhang HY, Zhao H, Deng XW, Nelson T (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41(2):258–263

    CAS  PubMed  Google Scholar 

  • Johnson MT, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN, Carrigan CT, Chase MW, Clarke ND, Covshoff S, Depamphilis CW, Edger PP, Goh F, Graham S, Greiner S, Hibberd JM, Jordon-Thaden I, Kutchan TM, Leebens-Mack J, Melkonian M, Miles N, Myburg H, Patterson J, Pires JC, Ralph P, Rolf M, Sage RF, Soltis D, Soltis P, Stevenson D, Stewart CN Jr, Surek B, Thomsen CJ, Villarreal JC, Wu X, Zhang Y, Deyholos MK, Wong GK (2012) Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One 7(11):e50226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kajala K, Covshoff S, Karki S, Woodfield H, Tolley BJ, Dionora MJ, Mogul RT, Mabilangan AE, Danila FR, Hibberd JM, Quick WP (2011) Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J Exp Bot 62(9):3001–3010

    CAS  PubMed  Google Scholar 

  • Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM (2012) Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J 69(1):47–56

    CAS  PubMed  Google Scholar 

  • Kolkman JM, Conrad LJ, Farmer PR, Hardeman K, Ahern KR, Lewis PE, Sawers RJ, Lebejko S, Chomet P, Brutnell TP (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169(2):981–995

    CAS  PubMed  Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921

    CAS  PubMed  Google Scholar 

  • Koteyeva NK, Voznesenskaya EV, Roalson EH, Edwards GE (2011) Diversity in forms of C4 in the genus Cleome (Cleomaceae). Ann Bot 107(2):269–283

    CAS  PubMed  Google Scholar 

  • Lai LB, Wang L, Nelson TM (2002) Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C3 and C4 Flaveria species. Plant Physiol 128(1):125–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23(11):3879–3892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lara MV, Casati P, Andreo CS (2002) CO2-concentrating mechanisms in Egeria densa, a submersed aquatic plant. Physiol Plant 115(4):487–495

    CAS  PubMed  Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62(9):3031–3037

    CAS  PubMed  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42(12):1060–1067

    CAS  PubMed  Google Scholar 

  • Liu WY, Chang YM, Chen SC, Lu CH, Wu YH, Lu MY, Chen DR, Shih AC, Sheue CR, Huang HC, Yu CP, Lin HH, Shiu SH, Ku MS, Li WH (2013) Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. PNAS 110(10):3979–3984

    CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29(3):315–330

    CAS  PubMed  Google Scholar 

  • Ludwig M (2011) The molecular evolution of β-carbonic anhydrase in Flaveria. J Exp Bot 62(9):3071–3081

    CAS  PubMed  Google Scholar 

  • Ludwig M, von Caemmerer S, Dean Price G, Badger MR, Furbank RT (1998) Expression of tobacco carbonic anhydrase in the C4 dicot Flaveria bidentis leads to increased leakiness of the bundle sheath and a defective CO2-concentrating mechanism. Plant Physiol 117(3):1071–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115(4):1681–1689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17(11):3111–3140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ (2010) Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22(11):3509–3542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall JS, Stubbs JD, Chitty JA, Surin B, Taylor WC (1997) Expression of the C4 Me1 gene from Flaveria bidentis requires an interaction between 5′ and 3′ sequences. Plant Cell 9(9):1515–1525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S, Griffiths H, Sage RF, Hibberd JM (2007) Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J 51(5):886–896

    CAS  PubMed  Google Scholar 

  • McKown AD, Dengler NG (2007) Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am J Bot 94(3):382–399

    PubMed  Google Scholar 

  • McKown AD, Moncalvo JM, Dengler NG (2005) Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Am J Bot 92(11):1911–1928

    CAS  PubMed  Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282(5389):662–682

    CAS  PubMed  Google Scholar 

  • Meister M, Agostino A, Hatch MD (1996) The roles of malate and aspartate in C4 photosynthetic metabolism of Flaveria bidentis (L.). Planta 199:262–269

    CAS  Google Scholar 

  • Mitchell PL, Sheehy JE (2006) Supercharging rice photosynthesis to increase yield. New Phytol 171(4):688–693

    CAS  PubMed  Google Scholar 

  • Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94(3):362–381

    CAS  PubMed  Google Scholar 

  • Nakano Y, Edwards GE (1987) Hill reaction, hydrogen peroxide scavenging, and ascorbate peroxidase activity of mesophyll and bundle sheath chloroplasts of NADP-malic enzyme type C4 species. Plant Physiol 85(1):294–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson T, Langdale JA (1992) Developmental genetics of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 43:25–47

    CAS  Google Scholar 

  • Newell CA, Brown NJ, Liu Z, Pflug A, Gowik U, Westhoff P, Hibberd JM (2010) Agrobacterium tumefaciens-mediated transformation of Cleome gynandra L., a C4 dicotyledon that is closely related to Arabidopsis thaliana. J Exp Bot 61(5):1311–1319

    CAS  PubMed  Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology: toward a synthesis with Atriplex. Springer, Berlin

    Google Scholar 

  • Patel M, Siegel AJ, Berry JO (2006) Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specific gene expression in leaves of a C4 plant. J Biol Chem 281(35):25485–25491

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

  • Pengelly JJ, Kwasny S, Bala S, Evans JR, Voznesenskaya EV, Koteyeva NK, Edwards GE, Furbank RT, von Caemmerer S (2011) Functional analysis of corn husk photosynthesis. Plant Physiol 156(2):503–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pengelly JJ, Tan J, Furbank RT, von Caemmerer S (2012) Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO2 through the C4 cycle. Plant Physiol 160(2):1070–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP (2011) Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23(12):4208–4220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powell AM (1978) Systematics of Flaveria (Flaveriinae–Asteraceae). Ann Missouri Bot Gard 65(2):590–636

    Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161(2):341–370

    CAS  Google Scholar 

  • Sage RF, Zhu XG (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62(9):2989–3000

    CAS  PubMed  Google Scholar 

  • Sage RF, Sage TL, Pearcy RW, Borsch T (2007) The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Am J Bot 94(12):1992–2003

    PubMed  Google Scholar 

  • Sage RF, Christin PA, Edwards EJ (2011) The C4 plant lineages of planet Earth. J Exp Bot 62(9):3155–3169

    CAS  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    CAS  PubMed  Google Scholar 

  • Sawers RJ, Liu P, Anufrikova K, Hwang JT, Brutnell TP (2007) A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics 8:12

    PubMed Central  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    CAS  PubMed  Google Scholar 

  • Sharpe RM, Offermann S (2013) One decade after the discovery of single-cell C4 species in terrestrial plants: what did we learn about the minimal requirements of C4 photosynthesis? Photosynth Res. doi:10.1007/s11120-013-9810-9

    PubMed  Google Scholar 

  • Sharpe RM, Mahajan A, Takacs EM, Stern DB, Cahoon AB (2011) Developmental and cell type characterization of bundle sheath and mesophyll chloroplast transcript abundance in maize. Curr Genet 57(2):89–102

    CAS  PubMed  Google Scholar 

  • Sheen J (1999) C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol 50:187–217

    CAS  PubMed  Google Scholar 

  • Slack CR, Hatch MD (1967) Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses. Biochem J 103(3):660–665

    CAS  PubMed  Google Scholar 

  • Stockhaus J, Poetsch W, Steinmüller K, Westhoff P (1994) Evolution of the C4 phosphoenolpyruvate carboxylase promoter of the C4 dicot Flaveria trinervia: an expression analysis in the C3 plant tobacco. Mol Gen Genet 245(3):286–293

    CAS  PubMed  Google Scholar 

  • Tanz SK, Tetu SG, Vella NG, Ludwig M (2009) Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria. Plant Physiol 150(3):1515–1529

    CAS  PubMed Central  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Tsai YT, Chen PY, To KY (2012) Plant regeneration and stable transformation in the floricultural plant Cleome spinosa, a C3 plant closely related to the C4 plant C. gynandra. Plant Cell Rep 31(7):1189–1198

    CAS  PubMed  Google Scholar 

  • Ueno O, Samejima M, Muto S, Miyachi S (1988) Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: expression of C4 and C3 modes in contrasting environments. Proc Natl Acad Sci USA 85(18):6733–6737

    CAS  PubMed  Google Scholar 

  • van der Weijde T, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RG, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107

    PubMed Central  PubMed  Google Scholar 

  • Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Glob Change Biol 14(12):2963–2977

    Google Scholar 

  • Vogan PJ, Sage RF (2012) Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3–C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis. Oecologia 169(2):341–352

    PubMed  Google Scholar 

  • Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP (2010) Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22(6):1667–1685

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Caemmerer S, Hendrickson L, Quinn V, Vella N, Millgate AG, Furbank RT (2005) Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis. Plant Physiol 137(2):747–755

    Google Scholar 

  • Wang L, Peterson RB, Brutnell TP (2011) Regulatory mechanisms underlying C4 photosynthesis. New Phytol 190(1):9–20

    CAS  PubMed  Google Scholar 

  • Westhoff P, Gowik U (2004) Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins: a case study with the genus Flaveria. Ann Bot 93(1):13–23

    CAS  PubMed  Google Scholar 

  • Westhoff P, Gowik U (2010) Evolution of C4 photosynthesis–looking for the master switch. Plant Physiol 154(2):598–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westhoff P, Offermann-Steinhard K, Höfer M, Eskins K, Oswald A, Streubel M (1991) Differential accumulation of plastidic transcripts encoding photosystem II components in the mesophyll and bundle sheath cells of monocotylednonous NADP-malic enzyme-type C4 plants. Planta 184:377–388

    CAS  PubMed  Google Scholar 

  • Williams-Carrier R, Stiffler N, Belcher S, Kroeger T, Stern DB, Monde RA, Coalter R, Barkan A (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63(1):167–177

    CAS  PubMed  Google Scholar 

  • Wiludda C, Schulze S, Gowik U, Engelmann S, Koczor M, Streubel M, Bauwe H, Westhoff P (2012) Regulation of the photorespiratory GLDPA gene in C4 Flaveria: an intricate interplay of transcriptional and posttranscriptional processes. Plant Cell 24(1):137–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyrich R, Dressen U, Brockmann S, Streubel M, Chang C, Qiang D, Paterson AH, Westhoff P (1998) The molecular basis of C4 photosynthesis in sorghum: isolation, characterization and RFLP mapping of mesophyll- and bundle-sheath-specific cDNAs obtained by differential screening. Plant Mol Biol 37(2):319–335

    CAS  PubMed  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    PubMed Central  PubMed  Google Scholar 

  • Zhang J, Peterson T (2005) A segmental deletion series generated by sister-chromatid transposition of Ac transposable elements in maize. Genetics 171(1):333–344

    CAS  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30(6):549–554

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the editors for inviting this review, Julian Hibberd for helpful comments on the manuscript and Rowan Sage for helpful discussions. SC thanks the International Rice Research Institute and the Department for International Development for funding. SJB, JK, and BMCK thank the Biotechnology and Biological Sciences Research Council for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Covshoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Covshoff, S., Burgess, S.J., Kneřová, J. et al. Getting the most out of natural variation in C4 photosynthesis. Photosynth Res 119, 157–167 (2014). https://doi.org/10.1007/s11120-013-9872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9872-8

Keywords

Navigation