Skip to main content
Log in

Red antenna states of photosystem I from Synechococcus sp. PCC 7002

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Absorption, fluorescence and single-molecule spectroscopy at low temperatures were used to elucidate spectral properties, heterogeneities and dynamics of the red-shifted chlorophyll a (Chla) molecules responsible for the fluorescence in photosystem I (PSI) from the cyanobacterium Synechoccocus sp. PCC 7002. The 77 K absorption spectrum indicates the presence of 2–3 red-shifted Chla’s absorbing at about 708 nm. The fluorescence emission spectrum is dominated by a broad band at 714 nm. The emission spectra of single PSI complexes show zero-phonon lines (ZPLs) as well as a broad intensity distribution without ZPLs. The spectral region below 710 nm often shows ZPLs, they form a spectral band with a maximum at 698 nm (F698). The region above 710 nm is dominated by broad intensity distributions and the observation of ZPLs is less frequent. The broad distributions are due to the emission of the C708 Chla’s and the emission from F698 stems from a Chla species absorbing at the blue side of P700. The properties of these two emissions show a close relation to those of the C708 and C719 pools observed in T. elongatus. Therefore an assignment of F698 and C708 to Chla-species with similarities to C708 and C719 in T. elongatus is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PSI:

Photosystem I

Chla:

Chlorophyll a

SMS:

Single-molecule spectroscopy,

ZPL:

Zero-phonon line

PW:

Phonon wing

td:

time-dependent

References

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 angstrom resolution. Nature 447(7140):58–63

    Article  PubMed  CAS  Google Scholar 

  • Andrizhiyevskaya EG, Schwabe TME, Germano M, D’Haene S, Kruip J, van Grondelle R, Dekker JP (2002) Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium synechococcus pcc 7942. Biochim Biophys Acta Bioenerg 1556(2–3):265–272

    Article  CAS  Google Scholar 

  • Brecht M, Studier H, Elli AF, Jelezko F, Bittl R (2007) Assignment of red antenna states in photosystem I from thermosynechoccocus elongatus by single-molecule spectroscopy. Biochemistry 46(3):799–806

    Article  PubMed  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta Bioenerg 1318(3):322–373

    Article  CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder E, Stehlik D, Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from synechococcus elongatus with P700 in the reduced and oxidized state: Are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79(2):992–1007

    PubMed  CAS  Google Scholar 

  • Frauenfelder H, Sliar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta Bioenerg 1507(1–3):5–31

    Article  CAS  Google Scholar 

  • Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta Bioenerg 1507(1-3):80–99

    Article  CAS  Google Scholar 

  • Gobets B, van Amerongen H, Monshouwer R, Kruip J, Rongner M, van Grondelle R, Dekker JP (1994) Polarized site-selected fluorescence spectroscopy of isolated photosystem-I particles. Biochim Biophys Acta Bioenerg 1188(1–2):75–85

    Article  CAS  Google Scholar 

  • Gobets B, van Stokkum IHM, van Mourik F, Dekker JP, van Grondelle R (2003) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from synechocystis pcc 6803 and synechococcus elongatus. Biophys J 85(6):3883–3898

    Article  PubMed  CAS  Google Scholar 

  • Hayes JM, Matsuzaki S, Ratsep M, Small GJ (2000) Red chlorophyll a antenna states of photosystem I of the cyanobacterium synechocystis sp pcc 6803. J Phys Chem B 104(23):5625–5633

    Article  CAS  Google Scholar 

  • Hofmann C, Aartsma TJ, Michel H, Kohler J (2003) Direct observation of tiers in the energy landscape of a chromoprotein: A single-molecule study. Proc Natl Acad Sci USA 100(26):15534–15538

    Article  PubMed  CAS  Google Scholar 

  • Hsin TM, Zazubovich V, Hayes JM, Small GJ (2004) Red antenna states of PSI of cyanobacteria: Stark effect and interstate energy transfer. J Phys Chem B 108(29):10515–10521

    Article  CAS  Google Scholar 

  • Jankowiak R, Hayes JM, Small GJ (1993) Spectral hole-burning spectroscopy in amorphous molecular-solids and proteins. Chem Rev 93(4):1471–1502

    Article  CAS  Google Scholar 

  • Jelezko F, Tietz C, Gerken U, Wrachtrup J, Bittl R (2000) Single-molecule spectroscopy on photosystem I pigment-protein complexes. J Phys Chem B 104(34):8093–8096

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution. Nature 411(6840):909–917

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan NV, Schlodder E, van Grondelle R, Dekker JH (2007) Advances in photosynthesis and respiration vol 24, Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Springer

  • Krauss N, Schubert WD, Klukas O, Fromme P, Witt HT, Saenger W (1996) Photosystem I at 4 angstrom resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna, system. Nat Struct Biol 3(11):965–973

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov AN, Lin S, Blankenship RE (2000) Femtosecond transient spectroscopy and excitonic interactions in photosystem I. J Phys Chem B 104(7):1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Muh F, Zouni A (2005) Extinction coefficients and critical solubilisation concentrations of photosystems I and II from thermosynechococcus elongatus. Biochim Biophys Acta Bioenerg 1708(2):219–228

    Article  CAS  Google Scholar 

  • Palsson LO, Flemming C, Gobets B, van Grondelle R, Dekker JP, Schlodder E (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of synechococcus elongatus. Biophys J 74(5):2611–2622

    PubMed  CAS  Google Scholar 

  • Ratsep M, Johnson TW, Chitnis PR, Small GJ (2000) The red-absorbing chlorophyll a antenna states of photosystem I: A hole-burning study of synechocystis sp pcc 6803 and its mutants. J Phys Chem B 104(4):836–847

    Article  CAS  Google Scholar 

  • Schlodder E, Shubin VV, El-Mohsnwy E, Roegner M, Karapetyan NV (2007) Steady-state and transient polarized absorption spectroscopy of photosystem I complexes from the cyanobacteria arthrospira platensis and thermosynechococcus elongatus. Biochim Biophys Acta 1767(6):732–741

    Article  PubMed  CAS  Google Scholar 

  • Sener MK, Lu DY, Ritz T, Park S, Fromme P, Schulten K (2002) Robustness and optimality of light harvesting in cyanobacterial photosystem I. J Phys Chem B 106(32):7948–7960

    Article  CAS  Google Scholar 

  • Shen GZ, Zhao JD, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH, Bryant DA (2002) Assembly of photosystem I: II. inactivation of the ruba gene encoding a membrane-associated rubredoxin in the cyanobacterium synechococcus sp pcc 7002 causes a loss of photosystem I activity. J Biol Chem 277(23):20343–20354

    Article  PubMed  CAS  Google Scholar 

  • Tamarat P, Maali A, Lounis B, Orrit M (2000) Ten years of single-molecule spectroscopy. J Phys Chem A 104(1):1–16

    Article  CAS  Google Scholar 

  • Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR, Small GJ (2002) Red antenna states of photosystem I from cyanobacterium synechococcus elongatus: a spectral hole burning study. Chem Phys 275(1–3):47–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank John H. Golbeck (Pennsylvania State University) for the PSI samples and helpful discussion and a reviewer for carefully reading the manuscript. This work was supported by Volkswagenstiftung in the framework of the program: Physics, chemistry, and biology with single molecules (I/78361 to R.B.) and by the Deutsche Forschungsgemeinschaft (SFB 498, TP A6 to E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bittl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brecht, M., Nieder, J.B., Studier, H. et al. Red antenna states of photosystem I from Synechococcus sp. PCC 7002. Photosynth Res 95, 155–162 (2008). https://doi.org/10.1007/s11120-007-9241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9241-6

Keywords

Navigation