Skip to main content
Log in

Heliobacterial photosynthesis

  • Review Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278–290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB] recombination, and the latter from P798+ FX recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe–4S]1+,2+ cluster with a ground spin state of S = 3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of ∼22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB] recombination and the light-induced EPR resonances of FA and FB . The gene was named ‘pshB’ and the protein ‘PshB’ in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adman ET, Siefker LC, Jensen LH (1976) Structure of Peptococcus aerogenes ferredoxin. Refinement at 2 Å resolution. J Biol Chem 251:3801–3806

    PubMed  CAS  Google Scholar 

  • Albert I, Rutherford AW, Grav H, Kellermann J, Michel H (1998) The 18 kDa cytochrome c553 from Heliobacterium gestii: gene sequence and characterization of the mature protein. Biochemistry 37:9001–9008

    Article  PubMed  CAS  Google Scholar 

  • Amesz J (1995) The heliobacteria, a new group of photosynthetic bacteria. J Photochem Photobiol B: Biol 30:89–96

    Article  CAS  Google Scholar 

  • Antonkine ML, Jordan P, Fromme P, Krauß N, Golbeck JH, Stehlik D (2003) Assembly of protein subunits within the stromal ridge of Photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327:671–697

    Article  PubMed  CAS  Google Scholar 

  • Antonkine ML, Liu G, Bentrop D, Bryant DA, Bertini I, Luchinat C, Golbeck JH, Stehlik D (2002) Solution structure of the unbound, oxidized Photosystem I subunit PsaC, containing [4Fe–4S] clusters FA and FB: a conformational change occurs upon binding to Photosystem I. J Biol Inorg Chem 7:461–472

    Article  PubMed  CAS  Google Scholar 

  • Aono S, Bentrop D, Bertini I, Cosenza G, Luchinat C (1998a) Solution structure of an artificial Fe8S8 ferredoxin: the D13C variant of Bacillus schlegelii Fe7S8 ferredoxin. Eur J Biochem 258:502–514

    Article  PubMed  CAS  Google Scholar 

  • Aono S, Bentrop D, Bertini I, Donaire A, Luchinat C, Niikura Y, Rosato A (1998b) Solution structure of the oxidized Fe7S8 ferredoxin from the thermophilic bacterium Bacillus schlegelii by 1H NMR spectroscopy. Biochemistry 37:9812–9826

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1985) A new type of photosynthetic reaction centre. Trends Biochem Sci 10:17–19

    Article  Google Scholar 

  • Beck H, Hegeman G, White D (1990) Fatty acid and lipopolysaccharide analysis of three Heliobacterium spp. FEMS Microbiol Lett 69:229–232

    Article  CAS  Google Scholar 

  • Beer-Romero P, Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g. FEMS Microbiol Lett 41:109–114

    Article  CAS  Google Scholar 

  • Bertini I, Donaire A, Feinberg BA, Luchinat C, Piccioli M, Yuan HP (1995) Solution structure of the oxidized 2[4Fe–4S] ferredoxin from Clostridium pasteurianum. Eur J Biochem 232:192–205

    Article  PubMed  CAS  Google Scholar 

  • Brettel K, Leibl W (2001) Electron transfer in Photosystem I. Biochim Biophys Acta 1507:100–114

    Article  PubMed  CAS  Google Scholar 

  • Brettel K, Leibl W, Liebl U (1998) Electron transfer in the heliobacterial reaction center: evidence against a quinone-type electron acceptor functioning analogous to A1 in Photosystem I. Biochim Biophys Acta 1363:175–181

    Article  PubMed  CAS  Google Scholar 

  • Brockmann H Jr, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19

    Article  CAS  Google Scholar 

  • Brok M, Vasmel H, Horikx JTG, Hoff AJ (1986) Electron transport components of Heliobacterium chlorum investigated by EPR spectroscopy at 9 and 35 GHz. FEBS Lett 194:322–326

    Article  CAS  Google Scholar 

  • Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    PubMed  CAS  Google Scholar 

  • Dauter Z, Wilson KS, Sieker LC, Meyer J, Moulis JM (1997) Atomic resolution (0.94 Å) structure of Clostridium acidurici ferredoxin. Detailed geometry of [4Fe–4S] clusters in a protein. Biochemistry 36:16065–16073

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  PubMed  CAS  Google Scholar 

  • Duee ED, Fanchon E, Vicat J, Sieker LC, Meyer J, Moulis JM (1994) Refined crystal structure of the 2[4Fe–4S] ferredoxin from Clostridium acidurici at 1.84 Å resolution. J Mol Biol 243:683–695

    Article  PubMed  CAS  Google Scholar 

  • Enkh-Amgalan J, Kawasaki H, Seki T (2005) NifH and NifD sequences of heliobacteria: a new lineage in the nitrogenase phylogeny. FEMS Microbiol Lett 243:73–79

    Article  PubMed  CAS  Google Scholar 

  • Enkh-Amgalan J, Kawasaki H, Seki T (2006) Molecular evolution of the nif gene cluster carrying nifI 1 and nifI 2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum. Int J Syst Evol Microbiol 56:65–74

    Article  PubMed  CAS  Google Scholar 

  • Fischer MR (1990) Photosynthetic electron transfer in Heliobacterium chlorum studied by EPR spectroscopy. Biochim Biophys Acta 1015:471–481

    Article  CAS  Google Scholar 

  • Fischer N, Hippler M, Sétif P, Jacquot JP, Rochaix JD (1998) The PsaC subunit of Photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. EMBO J 17:849–858

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Sétif P, Rochaix JD (1999) Site-directed mutagenesis of the PsaC subunit of Photosystem I. FB is the cluster interacting with soluble ferredoxin. J Biol Chem 274:23333–23340

    Article  PubMed  CAS  Google Scholar 

  • Fuller RC, Sprague SG, Gest H, Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:345–349

    Article  CAS  Google Scholar 

  • Gest H (1994) Discovery of heliobacteria. Photosynth Res 41:17–21

    Article  CAS  Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16

    Article  CAS  Google Scholar 

  • Golbeck JH (1999) A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC. A biochemical argument for the sequence of electron transfer in Photosystem I as FX → FA → FB → ferredoxin/flavodoxin. Photosynth Res 61:107–144

    Article  CAS  Google Scholar 

  • Golbeck JH, Bryant DA (1991) Photosystem I. In: Lee CP (ed) Current topics in bioenergetics, vol 16. Academic Press, San Diego, CA, pp 83–177

    Google Scholar 

  • Hans M, Buckel W, Bill E (2000) The iron–sulfur clusters in 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Eur J Biochem 267:7082–7093

    Article  PubMed  CAS  Google Scholar 

  • Hatano A, Seo D, Kitashima M, Sakurai H, Inoue K (2005) Purification of two ferredoxins and cloning of these genes from the photosynthetic bacterium Heliobacillus mobilis. In: van der Est A, Bruce D (eds) 13th International congress on photosynthesis. Allen Press Inc., Lawrence, Kansas, pp 83–85

    Google Scholar 

  • Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277

    Article  PubMed  CAS  Google Scholar 

  • Heinnickel M, Agalarov R, Svensen N, Krebs C, Golbeck JH (2006) Identification of FX in the heliobacterial reaction center as a [4Fe–4S] cluster with an S = 3/2 ground spin state. Biochemistry 45:6756–6764

    Article  PubMed  CAS  Google Scholar 

  • Heinnickel M, Shen G, Agalarov R, Golbeck JH (2005) Resolution and reconstitution of a bound Fe–S protein from the photosynthetic reaction center of Heliobacterium modesticaldum. Biochemistry 44:9950–9960

    Article  PubMed  CAS  Google Scholar 

  • Heinnickel M, Shen G, Golbeck JH (2007) Identification and characterization of PshB the dicluster ferredoxin that harbors the terminal electron acceptors FA and FB in Heliobacterium modesticaldum. Biochemistry 46:2530–2536

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A (1989) Occurrence of menaquinone as the sole isoprenoid quinone in the photosynthetic bacterium Heliobacterium chlorum. Arch Microbiol 151:378–379

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kandrashkin YE, Salikhov KM, van der Est A, Stehlik D (1998) Electron spin polarization in consecutive spin-correlated radical pairs: application to short-lived and long-lived precursors in type 1 photosynthetic reaction centres. Appl Magn Reson 15:417–447

    Article  CAS  Google Scholar 

  • Ke B (1973) The primary electron acceptor of Photosystem I. Biochim Biophys Acta 301:1–33

    PubMed  CAS  Google Scholar 

  • Kern J, Loll B, Zouni A, Saenger W, Irrgang KD, Biesiadka J (2005) Cyanobacterial Photosystem II at 3.2 Å resolution—the plastoquinone binding pockets. Photosynth Res 84:153–159

    Article  PubMed  CAS  Google Scholar 

  • Kimble LK, Madigan MT (1992a) Evidence for an alternative nitrogenase in Heliobacterium gestii. FEMS Microbiol Lett 100:255–260

    Article  CAS  Google Scholar 

  • Kimble LK, Madigan MT (1992b) Nitrogen fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 158:155–161

    Article  CAS  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267

    CAS  Google Scholar 

  • Kimble LK, Stevenson AK, Madigan MT (1994) Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–56

    Article  PubMed  CAS  Google Scholar 

  • Kleinherenbrink FAM, Aartsma TJ, Amesz J (1991) Charge separation and formation of bacteriochlorophyll triplets in Heliobacterium chlorum. Biochim Biophys Acta 1057:346–352

    Article  CAS  Google Scholar 

  • Kleinherenbrink FAM, Chiou HC, LoBrutto R, Blankenship RE (1994a) Spectroscopic evidence for the presence of an iron–sulfur center similar to FX of Photosystem I in Heliobacillus mobilis. Photosynth Res 41:115–123

    Article  PubMed  CAS  Google Scholar 

  • Kleinherenbrink FAM, Hastings G, Wittmershaus BP, Blankenship RE (1994b) Delayed fluorescence from Fe–S type photosynthetic reaction centers at low redox potential. Biochemistry 33:3096–3105

    Article  PubMed  CAS  Google Scholar 

  • Kleinherenbrink FAM, Ikegami I, Hiraishi A, Otte SCM, Amesz J (1993a) Electron transfer in menaquinone depleted membranes of Heliobacterium chlorum. Biochim Biophys Acta 1142:69–73

    Article  CAS  Google Scholar 

  • Kleinherenbrink FAM, Amesz J. (1993b) Stoichiometries and rates of electron transfer and charge recombination in Heliobacterium chlorum. Biochim Biophys Acta 1143:77–83

    Article  CAS  Google Scholar 

  • Kobayashi M, Hamano T, Akiyama M, Watanabe T, Inoue K, Oh-Oka H, Amesz J, Yamamura M, Kise H (1998) Light-independant isomerization of bacteriochlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Anal Chim Acta 365:199–203

    Article  CAS  Google Scholar 

  • Kobayashi M, van de Meent EJ, Erkelens C, Amesz J, Ikegami I, Watanabe T (1991a) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057:89–96

    Article  CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ, Amesz J (1991b) Enrichment of bacteriochlorophyll g(′ in membranes of Heliobacterium chlorum by ether extraction. Unequivocal evidence for its existence in vivo. FEBS Lett 284:129–131

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Schoepp B, Liebl U, Nitschke W (1997) Cyclic electron transfer in Heliobacillus mobilis involving a menaquinol-oxidizing cytochrome bc complex and an RCI-type reaction center. Biochemistry 36:4203–4211

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Lambry JC, Breton J, Martin JL, Vos MH (1997) Spectral equilibration and primary photochemistry in Heliobacillus mobilis at cryogenic temperature. Biochemistry 36:5912–5920

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Lambry JC, Leibl W, Breton J, Martin JL, Vos MH (1996) Energy and electron transfer upon selective femtosecond excitation of pigments in membranes of Heliobacillus mobilis. Biochemistry 35:9925–9934

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE, Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Rutherford AW, Nitschke W (1990) Evidence for a unique Rieske iron–sulphur centre in Heliobacterium chlorum. FEBS Lett 261:427–430

    Article  CAS  Google Scholar 

  • Lin S, Chiou HC, Blankenship RE (1995) Secondary electron transfer processes in membranes of Heliobacillus mobilis. Biochemistry 34:12761–12767

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Chiou HC, Kleinherenbrink FAM, Blankenship RE (1994) Time-resolved spectroscopy of energy and electron transfer processes in the photosynthetic bacterium Heliobacillus mobilis. Biophys J 66:437–445

    Article  PubMed  CAS  Google Scholar 

  • Lindahl PA, Day EP, Kent TA, Orme-Johnson WH, Münck E (1985) Mössbauer, EPR, and magnetization studies of the Azotobacter vinelandii Fe protein. Evidence for a [4Fe–4S]1+ cluster with spin S = 3/2. J Biol Chem 260:11160–11173

    PubMed  CAS  Google Scholar 

  • Locher KP, Hans M, Yeh AP, Schmid B, Buckel W, Rees DC (2001) Crystal structure of the Acidaminococcus fermentans 2-hydroxyglutaryl-CoA dehydratase component A. J Mol Biol 307:297–308

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Zouni A, Saenger W, Biesiadka J, Irrgang KD (2005) The antenna system of Photosystem II from Thermosynechococcus elongatus at 3.2 Å resolution. Photosynth Res 86:175–184

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT (2001) Heliobacteriaceae. In: Boone E, Castenholz RW, Garrity GM (eds) Bergy's manual of systematic bacteriology, 2nd edn., vol 1. Springer-Verlag, New York, NY, pp 625–630

  • Madigan MT, Ormerod JG (1995) Taxonomy, physiology, and ecology of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 17–30

    Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin g: properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84:2570–2574

    Article  PubMed  CAS  Google Scholar 

  • Miller K, Jacob JS, Smith U, Kolaczkowski S, Bowman MK (1986) Heliobacterium chlorum: cell organization and structure. Arch Microbiol 146:111–114

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto R, Iwaki M, Mino H, Harada J, Itoh S, Oh-Oka H (2006) ESR signal of the iron–sulfur center FX and its function in the homodimeric reaction center of Heliobacterium modesticaldum. Biochemistry 45:6306–6316

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Oh-oka H, Tamiaki H (2005) Determination of stereochemistry of bacteriochlorophyll g F and 81-hydroxy-chlorophyll a F from Heliobacterium modesticaldum. Photochem Photobiol 81:666–673

    Article  PubMed  CAS  Google Scholar 

  • Moulis JM, Sieker LC, Wilson KS, Dauter Z (1996) Crystal structure of the 2[4Fe–4S] ferredoxin from Chromatium vinosum: evolutionary and mechanistic inferences for [3/4Fe–4S] ferredoxins. Protein Sci 5:1765–1775

    PubMed  CAS  Google Scholar 

  • Muhiuddin IP, Rigby SEJ, Evans MCW, Amesz J, Heathcote P (1999) ENDOR and special TRIPLE resonance spectroscopy of photoaccumulated semiquinone electron acceptors in the reaction centers of green sulfur bacteria and heliobacteria. Biochemistry 38:7159–7167

    Article  PubMed  CAS  Google Scholar 

  • Neerken S, Amesz J (2001) The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim Biophys Acta 1507:278–290

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Liebl U, Matsuura K, Kramer DM (1995) Membrane-bound c-type cytochromes in Heliobacillus mobilis. In vivo study of the hemes involved in electron donation to the photosynthetic reaction center. Biochemistry 34:11831–11839

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Rutherford AW (1991) Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem Sci 16:241–245

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Schoepp B, Floss B, Schricker A, Rutherford AW, Liebl U (1996) Membrane-bound c-type cytochromes in Heliobacillus mobilis. Characterisation by EPR and optical spectroscopy in membranes and detergent-solubilised material. Eur J Biochem 242:695–702

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Sétif P, Liebl U, Feiler U, Rutherford AW (1990) Reaction center photochemistry of Heliobacterium chlorum. Biochemistry 29:11079–11088

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Fukami Y, Oh-oka H amd Inoue Y (1997) Fourier transform infrared study on the primary donor P798 of Heliobacterium modesticaldum: cysteine S–H coupled to P798 and molecular interactions of carbonyl groups. Biochemistry 36:12329–12336

    Article  PubMed  CAS  Google Scholar 

  • Nuijs AM, Van Dorssen RJ, Duysens LNM, Amesz J (1985) Excited states and primary photochemical reactions in the photosynthetic bacterium Heliobacterium chlorum. Proc Natl Acad Sci USA 82:6865–6868

    Article  PubMed  Google Scholar 

  • Oh-Oka H (2006) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol DOI: 10.1562/2006-03-29-IR-860

  • Oh-Oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147

    Article  PubMed  CAS  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  PubMed  CAS  Google Scholar 

  • Ormerod JG, Kimble LK, Nesbakken T, Torgersen YA, Woese CR, Madigan MT (1996) Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov. endospore-forming heliobacteria from rice field soil. Arch Microbiol 165:226–234

    Article  PubMed  CAS  Google Scholar 

  • Parrett KG, Mehari T, Warren P, Golbeck JH (1989) Purification and properties of the intact P-700 and FX containing Photosystem I core protein. Biochim Biophys Acta 973:324–332

    PubMed  CAS  Google Scholar 

  • Pickett MW, Weiss N, Kelly DJ (1994a) Gram-positive cell wall structure of the A3γ type in heliobacteria. FEMS Microbiol Lett 122:7–12

    Article  PubMed  CAS  Google Scholar 

  • Pickett MW, Williamson MP, Kelly DJ (1994b) An enzyme and 13C-NMR study of carbon metabolism in heliobacteria. Photosynth Res 41:75–88

    Article  CAS  Google Scholar 

  • Prince RC, Gest H, Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta 810:377–384

    Article  CAS  Google Scholar 

  • Rémigy HW, Stahlberg H, Fotiadis D, Müller SA, Wolpensinger B, Engel A, Hauska G, Tsiotis G (1999) The reaction center complex from the green sulfur bacterium Chlorobium tepidum: a structural analysis by scanning transmission electron microscopy. J Mol Biol 290:851–858

    Article  PubMed  Google Scholar 

  • Smit HWJ, Amesz J, van der Hoeven MFR (1987) Electron transport and triplet formation in membranes of the photosynthetic bacterium Heliobacterium chlorum. Biochim Biophys Acta 893:232–240

    Article  CAS  Google Scholar 

  • Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new phototrophic heliobacteria and their habitats. Photosynth Res 53:1–12

    Article  CAS  Google Scholar 

  • Stout CD (1993) Crystal structures of oxidized and reduced Azotobacter vinelandii ferredoxin at pH 8 and pH 6. J Biol Chem 268:25920–25927

    PubMed  CAS  Google Scholar 

  • Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-oka H, Madigan MT (1997) The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281

    Article  PubMed  CAS  Google Scholar 

  • Tranqui D, Jesior JC (1995) Structure of the ferredoxin from Clostridium acidiurici—model at 1.8 Å resolution. Acta Crystallogr D Biol Crystallogr 51:155–159

    Article  PubMed  CAS  Google Scholar 

  • Trost JT, Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28:9898–9904

    Article  PubMed  CAS  Google Scholar 

  • Trost JT, Brune DC, Blankenship RE (1992) Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I. Photosynth Res 32:11–22

    Article  PubMed  CAS  Google Scholar 

  • Unciuleac M, Boll M, Warkentin E, Ermler U (2004) Crystallization of 4-hydroxybenzoyl-CoA reductase and the structure of its electron donor ferredoxin. Acta Crystallogr D Biol Crystallogr 60:388–391

    Article  PubMed  CAS  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J, Watanabe T (1991) Identification of 81-hydroxychlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362

    Article  Google Scholar 

  • van de Meent EJ, Kleinherenbrink FAM, Amesz J (1990) Purification and properties of an antenna-reaction center complex from heliobacteria. Biochim Biophys Acta 1015:223–230

    Article  Google Scholar 

  • van der Est A, Hager-Braun C, Leibl W, Hauska G, Stehlik D (1998) Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies. Biochim Biophys Acta 1409:87–98

    Article  PubMed  Google Scholar 

  • van Dorssen RJ, Vasmel H, Amesz J (1985) Antenna organization and energy transfer in membranes of Heliobacterium chlorum. Biochim Biophys Acta 809:199–203

    Article  Google Scholar 

  • Vassiliev IR, Jung YS, Mamedov MD, Semenov AY, Golbeck JH (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in photosystem I. Biophys J 72:301–315

    PubMed  CAS  Google Scholar 

  • Vermaas WFJ (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294

    Article  PubMed  CAS  Google Scholar 

  • Vos MH, Klaassen HE, van Gorkom HJ (1989) Electron transport in Heliobacterium chlorum whole cells studied by electroluminescence and absorbance difference spectroscopy. Biochim Biophys Acta 973:163–169

    CAS  Google Scholar 

  • Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Rufat Agalarov, Robert Blankenship, Donald Bryant, and Michael Madigan for stimulating discussions. The author’s work was funded by a grant from the US Department of Energy (DE-FG02-98ER20314). The Phototrophic Prokaryote Sequencing Project <http://genomes.tgen.org/funded>http://genomes.tgen.org/ was funded by the NSF Microbial Genome Sequencing Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Golbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinnickel, M., Golbeck, J.H. Heliobacterial photosynthesis. Photosynth Res 92, 35–53 (2007). https://doi.org/10.1007/s11120-007-9162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9162-4

Keywords

Navigation