Skip to main content
Log in

Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Carbonic anhydrase (CA) activity of pea thylakoids, thylakoid membranes enriched with photosystem I (PSI-membranes), or photosystem II (PSII-membranes) as well as both supernatant and pellet after precipitation of thylakoids treated with detergent Triton X-100 were studied. CA activity of thylakoids in the presence of varying concentrations of Triton X-100 had two maxima, at Triton/chlorophyll (triton/Chl) ratios of 0.3 and 1.0. CA activities of PSI-membranes and PSII-membranes had only one maximum each, at Triton/Chl ratio 0.3 or 1.0, respectively. Two CAs with characteristics of the membrane-bound proteins and one CA with characteristics of the soluble proteins were found in the medium after thylakoids were incubated with Triton. One of the first two CAs had mobility in PAAG after native electrophoresis the same as that of CA residing in PSI-membranes, and the other CA had mobility the same as the mobility of CA residing in PSII-membranes, but the latter was different from CA situated in PSII core-complex (Ignatova et al. 2006 Biochemistry (Moscow) 71:525–532). The properties of the “soluble” CA removed from thylakoids were different from the properties of the known soluble CAs of plant cell: apparent molecular mass was about 262 kD and it was three orders more sensitive to the specific CA inhibitor, ethoxyzolamide, than soluble stromal CA. The data are discussed as indicating the presence of, at least, four CAs in pea thylakoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Acetazolamide

CA:

Carbonic anhydrase

DM:

Dodecyl-β-D-maltoside

DTT:

1,4-Dithio-DL-threitol

EZ:

Ethoxyzolamide

PAAG:

Polyacrylamide gel

PMSF:

Phenylmethylsulfonylfluoride

PSI:

Photosystem I

PSII:

Photosystem II

Rubisco:

Ribulosebisphosphatecarboxylase/oxygenase

References

  • Allakhverdiev SI, Yruela I, Picorel R et al (1997) Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Pr Natl Acad Sci USA 94:5050–5054

    Article  CAS  Google Scholar 

  • Anderson LE, Gibbons JT, Wang X (1996) Distribution of ten enzymes of carbon metabolism in pea (Pisum sativum) chloroplasts. Int J Plant Sci 157:525–538

    Article  CAS  Google Scholar 

  • Arancibia-Avila P, Coleman JR, Russin WA et al (2001) Carbonic anhydrase localization in charophycean green algae: ecological and evolutionary significance. Int J Plant Sci 162:127–135

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Diaz E, Sandblom JP, Wistrand PJ (1982) Selectivity properties of channels induced by a reconstituted membrane-bound carbonic anhydrase. Acta Physiol Scand 116:461–463

    Article  PubMed  CAS  Google Scholar 

  • Edwards LJ, Patton RL (1966) Visualization of carbonic anhydrase activity in polyacrylamide gel. Stain Technol 41:333–334

    CAS  Google Scholar 

  • Findlay JBC, Evans WH (1987) Biological membranes: a practical approach. IRL Press, Oxford

    Google Scholar 

  • Graham D, Reed ML, Patterson BD et al (1984) Chemical properties, distribution, and physiology of plant and algal carbonic anhydrases. Ann NY Acad Sci 429:222–237

    Article  PubMed  CAS  Google Scholar 

  • Ignatova LK, Moskvin OV, Romanova AK et al (1998) Carbonic anhydrases in the C3-plant leaf cell. Aust J Plant Physiol 25:673–678

    Article  CAS  Google Scholar 

  • Ignatova LK, Rudenko NN, Khristin MS et al (2006) Heterogeneous origin of carbonic anhydrase activity of thylakoid membranes. Biochemistry (Moscow) 71:525–532

    Article  CAS  Google Scholar 

  • Jebanathirajah JA, Coleman JR (1998) Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacum. Planta 203:177–182

    Article  Google Scholar 

  • Kachru RB, Anderson LE (1974) Chloroplast and cytoplasmic enzymes. Planta (Berl) 118:235–240

    Article  CAS  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY et al (1998) A novel alpha-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Khristin MS, Ignatova LK, Rudenko NN et al (2004) Photosystem II associated carbonic anhydrase activity in higher plants is situated in core-complex. FEBS Lett 577:305–308

    Article  PubMed  CAS  Google Scholar 

  • Kimber MS, Pai EF (2000) The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J 19:1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Kisiel W, Graf G (1972) Purification and characterization of carbonic anhydrase from Pisum sativum. Phytochemistry 11:113–117

    Article  CAS  Google Scholar 

  • Kisker C, Schindelin H, Alber BE et al (1996) A left-handed beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J 15:2323–2330

    PubMed  CAS  Google Scholar 

  • Klimov VV, Baranov SV (2001) Bicarbonate requirement for the water-oxidizing complex of photosystem II. Biochim Biophys Acta 1503:187–196

    Article  PubMed  CAS  Google Scholar 

  • Komarova YuM, Doman NG, Shaposhnikov GL (1982) Two forms of carbonic anhydrase from bean chloroplasts. Biochemistry (Moscow) 47:856–862

    Google Scholar 

  • Lazova G (1994) Electrophoretic characterization of the membrane-bound carboanhydrase form in pea chloroplasts. C R Acad Bulg Sci 47:93–96

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Fan AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:256–266

    Google Scholar 

  • Lu YK, Stemler AJ (2002) Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplasts. Plant Physiol 266:16746–16754

    Google Scholar 

  • Lu YK, Theg SM, Stemler AJ (2005) Carbonic anhydrase activity of the photosystem II OEC33 protein from pea. Plant Cell Physiol 46:1–10

    Article  CAS  Google Scholar 

  • Mitra M, Mason CB, Xiao Y et al (2005) The carbonic anhydrase gene families of Chlamydomonas reinhardtii. Can J Bot 83:780–795

    Article  CAS  Google Scholar 

  • Moskvin OV, Ignatova LK, Ovchinnikova VI et al (1995) Membrane-associated carbonic anhydrase of pea thylakoids. Biochemistry (Moscow) 60:859–864

    Google Scholar 

  • Moskvin OV, Ivanov BN, Ignatova LK et al (2000) Light-induced stimulation of carbonic anhydrase activity in pea thylakoids. FEBS Lett 470:375–377

    Article  PubMed  CAS  Google Scholar 

  • Moskvin OV, Shutova TV, Khristin MS et al (2004) Carbonic anhydrase activities in pea thylakoids —a Photosystem II core complex-associated carbonic anhydrase. Photosynth Res 79:93–100

    Article  PubMed  CAS  Google Scholar 

  • Perales M, Parisi G, Fornasari MS et al (2004) Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I. Plant Mol Biol 56:947–957

    Article  PubMed  CAS  Google Scholar 

  • Perales M, Eubel H, Heinemeyer J et al (2005) Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I+III2 levels and alters mitochondrial physiology in Arabidopsis. J Mol Biol 350:263–277

    Article  PubMed  CAS  Google Scholar 

  • Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16746–16754

    Google Scholar 

  • Pronina NA, Allakhverdiev SI, Kupriyanova EV et al (2002) Carbonic anhydrase in subchloroplast particles of pea plants. Russ J Plant Physiol 49:303–310

    Article  CAS  Google Scholar 

  • Rudenko NN, Ignatova LK, Kamornitskaya VB et al (2006) Pea leaf thylakoids contain several carbonic anhydrases. Dokl Biochem Biophys 408:155–157

    Article  PubMed  CAS  Google Scholar 

  • Rumeau D, Cuine S, Fina L et al (1996) Subcellular distribution of carbonic anhydrase in Solanum tuberosum L. leaves. Planta 199:79–88

    Article  PubMed  CAS  Google Scholar 

  • Semenenko VE, Avramova S, Georgiev D, Pronina NA (1977) Comparative study of activity and localization of carbonic anhydrase in cells of Chlorella and Scenedesmus. Russ J Plant Physiol 24:1055–1059

    CAS  Google Scholar 

  • Stemler AJ (1986) Carbonic anhydrase associated with thylakoids and photosystem II particles from maize. Biochim Biophys Acta 850:97–107

    Article  CAS  Google Scholar 

  • Stemler AJ (1997) The case for chloroplast thylakoid carbonic anhydrase. Physiol Plant 99:348–353

    Article  CAS  Google Scholar 

  • Sunderhaus S, Dudkina NV, Jänsch L (2006) Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J Biol Chem 281:6482–6488

    Article  PubMed  CAS  Google Scholar 

  • Süss K-H, Prokhorenko I, Adler K (1995) In situ association of Calvin cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase activase, ferredoxin-NADP + reductase, and nitrite reductase with thylakoid and pyrenoid membranes of Chlamydomonas reinhardtii chloroplasts as revealed by immunoelectron microscopy. Plant Physiol 107:1387–1397

    PubMed  Google Scholar 

  • Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya E, Muto S (1993) Carbonic anhydrase in the plasma membranes from C3 and C4 plants. Physiol Plant 88:413–419

    Article  CAS  Google Scholar 

  • Vaklinova SG, Goushtina LM, Lazova GN (1982) Carboanhydrase activity in chloroplasts and chloroplast fragments. C R Acad Bulg Sci 35:1721–1724

    CAS  Google Scholar 

  • van Rensen JJ, Tonk WJM, Bruijn SM (1988) Involvement of bicarbonate in the protonation of the secondary quinone electron acceptor of photosystem II via the non-haem iron of the quinone-iron acceptor complex. FEBS Lett 226:347–351

    Article  Google Scholar 

  • Villarejo A, Shutova TV, Moskvin OV et al (2002) A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO J 21:1930–1938

    Article  PubMed  CAS  Google Scholar 

  • Wilbur KW, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    CAS  PubMed  Google Scholar 

  • Winterman JFGM, De Mots A (1965) Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochim Biophys Acta 109:448–453

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. M.S. Khristin for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris N. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudenko, N.N., Ignatova, L.K. & Ivanov, B.N. Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms. Photosynth Res 91, 81–89 (2007). https://doi.org/10.1007/s11120-007-9148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9148-2

Keywords

Navigation