Skip to main content
Log in

Probing the lowest energy chlorophyll a states of Photosystem II via selective spectroscopy: new insights on P680

  • Regular paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We present the wavelength dependence of homogeneous holewidths of persistent spectral holes burnt in O2-evolving Photosystem II core complexes isolated from spinach, in the temperature range 2.5–8 K. The data supports the assignment that those chlorophylls which undergo persistent spectral hole-burning are specific CP43 and CP47-trap states that transfer their excitation energy to the reaction center. The lifetime-limited holewidths show that when PS II is in the S1(Q A ) (closed) state, the CP43/CP47-trap states have excited-state lifetimes in the range from 70 to 270 ps. These lifetimes correspond to excitation transfer rates to the reaction center, and are far slower than required for models in which the PS II reaction center (P680) acts as a ‘shallow-trap’ for excitations. For wavelengths at which both traps absorb, the hole shape is clearly a composite of two Lorentzians, corresponding to hole-burning in both states simultaneously. The temperature dependence of the homogeneous holewidth does not follow the usual T1.3 dependence found in many chlorophyll–protein systems. Our data indicates T 2 temperature dependence, typically found in crystalline systems where the chromophore is coupled to localized phonon modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cytb559:

the cytochrome b559 subunit

PS II:

Photosystem II

TLS:

two level system

References

  • TMH. Creemers S. Völker (2000) Dynamics of Glasses and Proteins Probed by Time-Resolved Hole Burning C Gooijer F. Ariese JW. Hofstraat (Eds) Shpol’skii Spectroscopy and Other Site-Selection Methods. Wiley-Interscience New York 273–331

    Google Scholar 

  • H Dau (1994) ArticleTitleMolecular mechanisms and quantitative models of variable Photosystem II fluorescence Photochem Photobiol 60 1–23

    Google Scholar 

  • H Dau K Sauer (1996) ArticleTitleExciton equilibration and Photosystem II exciton dynamics – a fluorescence study on Photosystem II membrane particles of Spinach Biochim Biophys Acta 1273 175–190

    Google Scholar 

  • FL Weerd Particlede IHM Stokkum Particlevan H Amerongen Particlevan JP Dekker R Grondelle Particlevan (2002) ArticleTitlePathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of Photosystem II Biophys J 82 1586–1597 Occurrence Handle11867471

    PubMed  Google Scholar 

  • JP Dekker R Grondelle Particlevan (2000) ArticleTitlePrimary charge separation in Photosystem II Photosynth Res 63 195–208 Occurrence Handle10.1023/A:1006468024245

    Article  Google Scholar 

  • P Faller A Pascal AW Rutherford (2001) ArticleTitleβ-Carotene redox reactions in Photosystem II: electron transfer pathway Biochemistry 40 6431–6440 Occurrence Handle11371206

    PubMed  Google Scholar 

  • SR Greenfield MR Wasielewski (1996) ArticleTitleExcitation energy transfer and charge separation in the isolated Photosystem II reaction center Photosynth Res 48 83–97 Occurrence Handle10.1007/BF00040999

    Article  Google Scholar 

  • JL Hughes BJ Prince E Krausz PJ Smith RJ Pace H Riesen (2004) ArticleTitleHighly efficient spectral hole-burning in oxygen-evolving Photosystem II preparations J Phys Chem B 108 10428–10439 Occurrence Handle10.1021/jp0492523

    Article  Google Scholar 

  • R Jankowiak JM Hayes GJ Small (1993) ArticleTitleSpectral hole-burning spectroscopy in amorphous molecular solids and proteins Chem Rev 93 1471–1502 Occurrence Handle10.1021/cr00020a005

    Article  Google Scholar 

  • WE. Moerner (Eds) (1988) Persistent Spectral Hole-Burning: Science and applications Springer-Verlag Berlin, Heidelberg

    Google Scholar 

  • S Peterson Årsköld VM Masters BJ Prince PJ Smith RJ Pace E Krausz (2003) ArticleTitleOptical spectra of Synechocystis and spinach Photosystem II preparations: identification of the D1-pheophytin energies and stark shifts J Am Chem Soc 125 13063–13074 Occurrence Handle14570479

    PubMed  Google Scholar 

  • BJ Prince E Krausz S Peterson Årsköld PJ Smith RJ Pace (2004) ArticleTitlePersistent Spectral hole burning in oxygen-evolving Photosystem II from Cyanobacteria and higher plants J Lumin 108 101–105 Occurrence Handle10.1016/j.jlumin.2004.01.024

    Article  Google Scholar 

  • VI Prokhorenko AR Holtzwarth (2000) ArticleTitlePrimary processes and structure of the Photosystem II reaction center: a photon echo study J Phys Chem B 104 11563–11578 Occurrence Handle10.1021/jp002323n

    Article  Google Scholar 

  • M Rätsep RE Blankenship GJ Small (1999) ArticleTitleEnergy transfer and spectral dynamics of the three lowest energy Qy-states of the Fenna–Mattews–Olson complex J Phys Chem B 103 5736–5741 Occurrence Handle10.1021/jp990918g

    Article  Google Scholar 

  • GH Schatz H Brock AR Holzwarth (1987) ArticleTitlePicosecond kinetics of fluorescence and absorbance changes in Photosystem II particles excited at low photon density Proc Natl Acad Sci USA 84 8414–8418

    Google Scholar 

  • GH Schatz H Brock AR Holzwarth (1988) ArticleTitleKinetic and energetic model for the primary processes in Photosystem II Biophys J 54 397–405

    Google Scholar 

  • JPM Schelvis M Germano TJ Aartsma HJ Gorkom Particlevan (1995) ArticleTitleEnergy transfer and trapping in Photosystem II core Particles with closed reaction centres Biochim Biophys Acta 1230 165–169

    Google Scholar 

  • PJ Smith S Peterson VM Masters T Wydrzynski S Styring E Krausz RJ Pace (2002) ArticleTitleMagneto-optical measurements of the pigments in fully active Photosystem II core complexes from plants Biochemistry 41 1981–1989 Occurrence Handle11827545

    PubMed  Google Scholar 

  • FJE Mieghem Particlevan GFW Searle AW Rutherford TJ Schaafsma (1992) ArticleTitleThe influence of the double reduction of QA on the fluorescence decay kinetics of Photosystem II Biochim Biophys Acta 1100 198–206

    Google Scholar 

  • S Vasil’ev P Orth A Zouni TG Owens D Bruce (2001) ArticleTitleExcited-state dynamics in Photosystem II: insights from the X-ray crystal structure Proc Natl Acad Sci USA 98 8602–8607 Occurrence Handle11459991

    PubMed  Google Scholar 

  • S. Völker (1989) Spectral Hole-Burning in Crystalline and Amorphous Organic Solids. Optical Relaxation Processes at Low temperature J. Fünfschilling (Eds) Relaxation Processes in Molecular Excited States. Kluwer Academic Publishers Dordrecht, Boston, London 113–242

    Google Scholar 

  • LM Yoder AG Cole RJ Sension (2002) ArticleTitleStructure and function in the isolated reaction center complex of Photosystem II: energy and charge transfer dynamics and mechanism Photosynth Res 72 147–158 Occurrence Handle10.1023/A:1016180616774

    Article  Google Scholar 

  • V Zazubovich R Jankowiak K Riley R Picorel M Seibert GJ Small (2003) ArticleTitleHow fast is excitation energy transfer in the Photosystem II reaction center in the low temperature limit?. Hole burning vs photon echo . J Phys Chem B 107 2862–2866 Occurrence Handle10.1021/jp022231t

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, J.L., Krausz, E., Smith, P.J. et al. Probing the lowest energy chlorophyll a states of Photosystem II via selective spectroscopy: new insights on P680. Photosynth Res 84, 93–98 (2005). https://doi.org/10.1007/s11120-004-7927-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-004-7927-6

Keywords

Navigation