Skip to main content

Advertisement

Log in

NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Although the information on the Normalized Difference Vegetation Index (NDVI) in plants under water deficit is often obtained from sensors attached to satellites, the increasing data acquisition with portable sensors has wide applicability in agricultural production because it is a fast, nondestructive method, and is less prone to interference problems. Thus, we carried out a set of experiments to investigate the influence of time, spatial plant arrangements, sampling size, height of the sensor and water regimes on NDVI readings in different soybean cultivars in greenhouse and field trials during the crop seasons 2011/12, 2012/13 and 2013/14. In experiments where plants were always evaluated under well-watered conditions, we observed that 9 a.m. was the most suitable time for NDVI readings regardless of the soybean cultivar, spatial arrangement or environment. Furthermore, there was no difference among NDVI readings in relation to the sampling size, regardless of the date or cultivar. We also observed that NDVI tended to decrease according to the higher height of the sensor in relation to the canopy top, with higher values tending to be at 0.8 m, but with no significant difference relative to 1.0 m—the height we adopted in our experiments. When different water regimes were induced under field conditions, NDVI readings measured at 9 a.m. by using a portable sensor were successful to differentiate soybean cultivars with contrasting responses to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Boller, W., Ferreira, M. C., & Costa, D. I. (2011). Condições do ar e angulação das folhas influenciam a qualidade das pulverizações na cultura da soja? Revista Plantio Direto, 121, 33–37.

    Google Scholar 

  • Campos, H., Cooper, A., Habben, J. E., Edmeades, G. O., & Schussler, J. R. (2004). Improving drought tolerance in maize: A view from industry. Field Crops Research, 90, 19–34.

    Article  Google Scholar 

  • Carvalho, J. F. C., Crusiol, L. G. T., Perini, L. J., Sibaldelli, R. N. R., Ferreira, L. C., Marcelino-Guimaraes, F. C., et al. (2015). Phenotyping soybeans for drought responses using remote sensing techniques and non-destructive physiological analysis. Global Science and Technology, 8, 1–16.

    Article  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 30, 239–264.

    Article  CAS  Google Scholar 

  • Chávez, R. O., Clevers, J. G. P. W., Verbesselt, J., Naulin, P. I., & Herold, M. (2014). Detecting leaf pulvinar movements on NDVI time series of desert trees: A new approach for water stress detection. PLoS One, 9, 1–12.

    Google Scholar 

  • Chen, P. Y., Srinivasan, R., Fedosejevs, G., & Narasimhan, B. (2002). An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA. International Journal of Remote Sensing, 23, 2939–2950.

    Article  Google Scholar 

  • Conab—National company of food supply (2016). Brazilian crop assessment—Grain, 2015/2016 crops, eight inventory survey, May/2016. Accessed July 08, 2016, from http://www.conab.gov.br/OlalaCMS/uploads/arquivos/16_05_27_09_24_04_boletim_graos_maio__2016_-_final.pdf.

  • Conab—National Company of Food Supply (2013). Brazilian crop assessment—Grain, 2012/2013 crops, twelfth inventory survey, September/2013. Accessed July 08, 2016, from http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_10_16_14_32_01_boletim_ingles_-_setembro_2013.pdf.

  • Conab—National Company of Food Supply (2014). Brazilian crop assessment—Grain, 2013/2014 crops, twelfth inventory survey, September/2014. Accessed July 08, 2016, from http://www.conab.gov.br/OlalaCMS/uploads/arquivos/14_09_10_14_35_09_boletim_graos_setembro_2014.pdf.

  • Dorman, M., Svoray, T., Perevolotsky, A., & Sarris, D. (2013). Forest performance during two consecutive drought periods: Diverging long-term trends and short-term responses along a climatic gradient. Forest Ecology and Management, 310, 1–9.

    Article  Google Scholar 

  • Embrapa Soja. (2013). Tecnologias de produção de soja – Região Central do Brasil 2014. Londrina: Embrapa Soja– Embrapa Cerrados – Embrapa Agropecuária Oeste.

    Google Scholar 

  • Esquerdo, J. C. D. M., Zullo, J, Jr., & Antunes, J. F. G. (2011). Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. International Journal of Remote Sensing, 32, 3711–3727.

    Article  Google Scholar 

  • Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Special Report 80. Iowa: Iowa State University of Science and Technology.

  • Ferreira, D. F. (2010). SISVARSistema de análise de variância. Versão 5.3. Lavras: UFLA.

  • Folhes, M. T., Rennó, C. D., & Soares, J. V. (2009). Remote sensing for irrigation water management in the semi-arid northeast of Brazil. Agricultural Water Management, 96, 1398–1408.

    Article  Google Scholar 

  • Gusso, A. (2013). Integração de imagens NOAA/AVHRR: Rede de cooperação para monitoramento nacional da safra de soja. Ceres, 60, 194–204.

    Article  Google Scholar 

  • Heatherly, L. G., & Elmore, T. W. (2004). Managing inputs for peak production. In J. E. Specht & H. R. Boerma (Eds.), Soybeans: Improvement, production and uses (pp. 451–536). Madison: ASA-CSSA-SSSA.

    Google Scholar 

  • Hikishima, M., Canteri, M. G., Godoy, C. V., Koga, L. J., & Silva, A. J. (2010). Relationships among disease intensity, canopy reflectance and grain yield in the Asian soybean rust pathosystem. Tropical Plant Pathology, 35, 96–103.

    Article  Google Scholar 

  • Kim, K., & Chavas, J. P. (2003). Technological change and risk management: An application to the economics of corn production. Agricultural Economics, 29, 125–142.

    Article  Google Scholar 

  • Koundauri, P., Nauges, C., & Tzouvelekas, V. (2006). Technology adoption under production uncertainty: theory and application to irrigation technology. American Journal of Agricultural Economics, 88, 657–670.

    Article  Google Scholar 

  • Lawlor, D. W. (2013). Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations and possibilities. Journal of Experimental Botany, 63, 695–709.

    Google Scholar 

  • Levitt, J. (1972). Responses of plants to environmental stresses. New York: Academic Press.

    Google Scholar 

  • Marti, J., Bort, J., Slafer, G. A., & Araus, J. L. (2007). Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index? Annals of Applied Biology, 150, 253–257.

    Article  Google Scholar 

  • Mengistu, A., Tachibana, H., Epstein, A. H., Bidne, K. G., & Hatfield, J. D. (1987). Use of canopy temperature to measure the effects of brown stem rot and soil moisture stress and its relation to yields of soybean. Plant Disease, 71, 632–634.

    Article  Google Scholar 

  • Monteiro, P. F. C., Angulo Filho, R., Xavier, A. C., & Monteiro, R. O. C. (2012). Assessing biophysical variable parameters of bean crop with hyperspectral measurements. Scientia Agricola, 69, 87–94.

    Article  Google Scholar 

  • Mullan, D. J., & Reynolds, M. P. (2010). Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Functional Plant Biology, 37, 703–712.

    Article  Google Scholar 

  • Oya, T., Nepomuceno, A. L., Neumaier, N., Farias, J. R. B., Tobita, S., & Ito, O. (2004). Drought tolerance characteristics of brazilian soybean cultivars—evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Production Science, 7, 129–137.

    Article  Google Scholar 

  • Rakocevic, M., Neumaier, N., Oliveira, G. M., Nepomuceno, A. L., & Farias, J. R. B. (2010). Heliotropic responses of soybean cultivars at three phenological stages and under two water regimes. Pesquisa Agropecuária Brasileira, 45, 661–670.

    Article  Google Scholar 

  • Rao, T. V. R. (1985). Monitoring water stress in soybeans with remote sensing techniques. Lincoln: University of Nebraska.

    Google Scholar 

  • Rosa, L. M., & Forseth, I. N. (1996). Diurnal patterns of soybean leaf inclination angles and azimuthal orientation under different levels of ultraviolet-B radiation. Agricultural and Forest Meteorology, 78, 107–119.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Accessed July 8, 2016, from http://archive.org/details/nasa_techdoc_19740022555.

  • Royo, C., Aparicio, N., Villegas, D., Casadesus, J., Monneveux, P., & Araus, J. L. (2003). Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. International Journal of Remote Sensing, 24, 4403–4419.

    Article  Google Scholar 

  • Rulinda, C. M., Dilo, A., Bijker, W., & Stein, A. (2012). Characterising and quantifying vegetative drought in East Africa using fuzzy modelling and NDVI data. Journal of Arid Environments, 78, 169–178.

    Article  Google Scholar 

  • Samseemoung, G., Soni, P., Jayasuriya, H. P. W., & Salokhe, V. M. (2012). Application of low altitude remote sensing (LARS) platform for monitoring crop growth and weed infestation in a soybean plantation. Precision Agriculture, 13, 611–627.

    Article  Google Scholar 

  • Seversike, T. M., Sermons, S. M., Sinclair, T. R., Carter, T. E, Jr., & Rufty, T. W. (2013). Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes. Physiologia Plantarum, 148, 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Sruthi, S., & Mohammed Aslam, M. A. (2015). Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia, 4, 1258–1264.

    Article  Google Scholar 

  • Steven, M. D. (1993). Satellite remote sensing for agricultural management: Opportunities and logistic constraints. ISPRS Journal of Photogrammetry and Remote Sensing, 48, 29–34.

    Article  Google Scholar 

  • Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Centerton: Laboratory of Climatology.

    Google Scholar 

  • Wilson, K. B., & Bunce, J. A. (1997). Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean. Plant, Cell and Environment, 20, 230–238.

    Article  Google Scholar 

  • Wright, D. L, Jr., Rasmussen, V. P, Jr., & Ramsey, R. D. (2005). Comparing the use of remote sensing with traditional techniques to detect nitrogen stress in wheat. Geocarto International, 20, 63–68.

    Article  Google Scholar 

  • Xavier, A. C., Rudorff, B. F. T., Moreira, M. A., Alvarenga, B. S., Freitas, J. G., & Salomon, M. V. (2006). Hyperspectral field reflectance measurements to estimate wheat grain yield and plant height. Scientia Agricola, 63, 130–138.

    Article  Google Scholar 

  • Yuhas, A. N., & Scuderi, L. A. (2009). MODIS-derived NDVI characterization of drought-induced evergreen dieoff in Western North America. Geographical Research, 47, 34–45.

    Article  Google Scholar 

  • Zhang, F., Zhang, L. W., Wang, X. Z., & Hung, J. F. (2013). Detecting agro-droughts in Southwest of China using MODIS satellite data. Journal of Integrative Agriculture, 12, 159–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for granting the scholarship to the postdoctoral fellow JFC Carvalho and the National Council for Scientific and Technological Development (CNPq) for granting the scholarships to the students LGT Crusiol (PIBIC), W Neiverth (DTI-C), A Rio (DTI-C) and LC Ferreira (postdoctoral fellow). This paper was approved for publication by the Editorial Board of Embrapa Soybean as manuscript number 22/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Renato Bouças Farias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crusiol, L.G.T., Carvalho, J.d.F.C., Sibaldelli, R.N.R. et al. NDVI variation according to the time of measurement, sampling size, positioning of sensor and water regime in different soybean cultivars. Precision Agric 18, 470–490 (2017). https://doi.org/10.1007/s11119-016-9465-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9465-6

Keywords

Navigation