Skip to main content
Log in

Crop water status estimation using thermography: multi-year model development using ground-based thermal images

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Thermal crop sensing technologies have potential as tools for monitoring and mapping crop water status. To create maps of water status from thermal images, a reliable relationship between direct water status measures like leaf water potential (LWP) and thermal water status measures like temperature and crop water stress index (CWSI) should be established for different crops and for different growth stages. The objective of this study was to define the relationships for cotton between LWP and CWSI derived from high-resolution ground-based thermal images and more specifically to examine whether robust relationships exist between the two measures for different varieties, through a cotton growing season, across seasons and under different geographical areas (different climate and soils). A dataset from three cotton growing seasons and from different geographical areas was built to explore the relationship between CWSI and LWP in cotton. CWSI was calculated based on ground-based thermal images and measured dry (T air  + 5 °C) and wet references (Artificial wet reference surface—AWRS). A linear CWSI–LWP relationship was found with high coefficient of determination (R2 = 0.7). This relationship changed over the cotton growth stages and different CWSI–LWP relationships were established to the flowering, boll-filling and defoliation stages. The boll-filling relationship was found to be insensitive to a range of meteorological conditions. The flowering and the boll-filling models were initially validated using diagonal (oblique) thermal images from dates that were not used for calibration. For CWSI calculation, the average temperature of the lowest decile was used for the wet reference instead of the AWRS. The comparison between predicted and observed values of the validation sets yielded RMSE of 0.18 and 0.15 for the flowering and boll-filling stages, respectively. The successful use of the lowest decile as the wet reference enables a future application of the CWSI–LWP relationship to map LWP at a commercial field scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agam, N., Cohen, Y., Berni, J. A. J., Alchanatis, V., Kool, D., Dag, A., et al. (2013). An insight to the performance of crop water stress index for olive trees. Agricultural Water Management, 118, 79–86.

    Article  Google Scholar 

  • Alchanatis, V., Cohen, Y., Cohen, S., Moller, M., Sprinstin, M., Meron, M., et al. (2010). Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precision Agriculture, 11, 27–41. doi:10.1007/s11119-009-9111-7.

    Article  Google Scholar 

  • Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Canto, G., Fereres, E., & Villalobos, F. (2009). Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment, 113, 2380–2388. doi:10.1016/j.rse.2009.06.018.

    Article  Google Scholar 

  • Chavez, J. L., Pierce, F. J., Elliott, T. V., & Evans, R. G. (2010). A remote irrigation monitoring and control system for continuous move systems. Part A: Description and development. Precision Agriculture, 11, 1–10. doi:10.1007/s11119-009-9109-1.

    Article  Google Scholar 

  • Cohen, Y., Alchanatis, V., Meron, M., Saranga, Y., & Tsipris, J. (2005). Estimation of leaf water potential by thermal imagery and spatial analysis. Journal of Experimental Botany, 56, 1843–1852. doi:10.1093/jxb/eri174.

    Article  CAS  PubMed  Google Scholar 

  • Craddock, E. (1994). The California irrigation management information system (CIMIS), In G. J. Hoffman, T. A. Howell & K. H. Solomon (Eds.), Management of farm irrigation systems (pp. 931–941). St. Joseph, MI: American Society of Agricultural Engineers.

  • Evett, S. R., Peters, R. T., & Howell, T. A. (2006). Controlling water use efficiency with irrigation automation: Cases from drip and center pivot irrigation of corn and soybean. In R. C. Schwartz, et al. (Eds.), 28th Annual southern conservation systems conference (pp. 57–66). Amarillo: USDA-ARS Conservation and Production Research Laboratory.

    Google Scholar 

  • Gonzalez-Dugo, V., Zarco-Tejada, P., Berni, J. A. J., Suárez, L., Goldhamer, D., & Fereres, E. (2012). Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agricultural and Forest Meteorology, 154–155, 156–165. doi:10.1016/j.agrformet.2011.11.004.

    Article  Google Scholar 

  • Gonzalez-Dugo, V., Zarco-Tejada, P., Nicolas, E., Nortes, P. A., Alarcon, J. J., Intrigliolo, D. S., et al. (2013). Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14, 660–678. doi:10.1007/s11119-013-9322-9.

    Article  Google Scholar 

  • Irmak, S., Haman, D. Z., & Bastug, R. (2000). Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal, 92, 1221–1227.

    Article  Google Scholar 

  • Jackson, S. H. (1991). Relationships between normalized leaf water potential and crop water-stress index values for acala cotton. Agricultural Water Management, 20, 109–118. doi:10.1016/0378-3774(91)90010-g.

    Article  Google Scholar 

  • Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 171, 133–138.

    Google Scholar 

  • Jones, H. G. (1992). Plants and microclimate (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones, H. G. (1999). Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology, 95, 139–149. doi:10.1016/s0168-1923(99)00030-1.

    Article  Google Scholar 

  • Kacira, M., Ling, P. P., & Short, T. H. (2002). Establishing crop water stress index (CWSI) threshold values for early, non-contact detection of plant water stress. Transactions of the ASAE, 45, 775–780.

    Google Scholar 

  • Menesatti, P., Biocca, M., D’Andrea, S., & Pincu, M. (2008). Thermography to analyze distribution of agricultural sprayers. Qirt Journal, 5, 81–96. doi:10.3166/qirt.5.81-96.

    Article  Google Scholar 

  • Meron, M., Grimes, D. W., Phene, C. J., & Davis, K. R. (1987). Pressure chamber procedures for leaf water potential measurements of cotton. Irrigation Science, 8, 215–222.

    Article  Google Scholar 

  • Meron, M., Tsipris, J., & Charitt, D. (2003). Remote mapping of crop water status to assess spatial variability of crop stress. In J. V. Stafford & A. Werner (Eds.), Proceedings of the 4th European conference on precision agriculture (pp. 405–410). The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Meron, M., Tsipris, J., Orlov, V., Alchanatis, V., & Cohen, Y. (2010). Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precision Agriculture, 11, 148–162. doi:10.1007/s11119-009-9153-x.

    Article  Google Scholar 

  • Möller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., et al. (2007). Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany, 58, 827–838. doi:10.1093/jxb/erl115.

    Article  PubMed  Google Scholar 

  • O’Shaughnessy, S. A., & Evett, S. R. (2010). Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agricultural Water Management, 97, 1310–1316. doi:10.1016/j.agwat.2010.03.012.

    Article  Google Scholar 

  • O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D., & Howell, T. A. (2011). Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 98, 1523–1535. doi:10.1016/j.agwat.2011.05.005.

    Article  Google Scholar 

  • O’Shaughnessy, S. A., Evett, S. R., Colaizzi, P. D., & Howell, T. A. (2012). Grain sorghum response to irrigation scheduling with the time-temperature threshold method and deficit irrigation levels. Transactions of the ASABE, 55, 451–461.

    Article  Google Scholar 

  • Prenger, J. J., Ling, P. P., Hansen, R. C., & Keener, H. M. (2005). Plant response-based irrigation control system in a greenhouse: System evaluation. Transactions of the ASAE, 48, 1175–1183.

    Article  Google Scholar 

  • Rosenberg, O., Alchanatis, V., Cohen, Y., Saranga, Y., & Bosak, A. (2014). Are thermal images adequate for irrigation Management? In J. V. Stafford (Ed.), The 12th International conference on precision agriculture, Sacramento, CA. https://www.ispag.org/program/3/. Accessed 7 Sept 2014.

  • Rosenberg, O., Cohen, Y., Saranga, Y., Levi, A., & Alchanatis, V. (2013). Comparison of methods for field scale mapping of plant water status using aerial thermal imagery. In J. V. Stafford (Ed.), Proceedings of the 9th European Conference on Precision Agriculture (pp. 185–192), Lleida, Catalonia, Spain. Wageningen Academic Publishers.

    Google Scholar 

  • Steele, D. D., Gregor, B. L., & Shae, J. B. (1997). Irrigation scheduling methods for popcorn in the northern Great Plains. Transactions of the ASAE, 40, 149–155.

    Article  Google Scholar 

  • Sullivan, D. G., Fulton, J. P., Shaw, J. N., & Bland, G. (2007). Evaluating the sensitivity of an unmanned thermal infrared aerial system to detect water stress in a cotton canopy. Transactions of the ASABE, 50, 1955–1962.

    Article  Google Scholar 

  • Wanjura, D. F., Upchurch, D. R., & Mahan, J. R. (1995). Control of irrigation scheduling using temperature–time thresholds. Transactions of the ASAE, 38, 403–409.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Binational Agricultural Research and Development Fund (Grant No. TB-8006-04) and the Chief Scientist of the Israeli Ministry of Agriculture (Project No. 458-0361-05). We would like to thank the two anonymous referees who reviewed the manuscript very carefully and their comments led to a significant improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, Y., Alchanatis, V., Sela, E. et al. Crop water status estimation using thermography: multi-year model development using ground-based thermal images. Precision Agric 16, 311–329 (2015). https://doi.org/10.1007/s11119-014-9378-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9378-1

Keywords

Navigation