Skip to main content

Advertisement

Log in

Use of soil nitrogen parameters and texture for spatially-variable nitrogen fertilization

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated the potential importance of using soil texture to modify fertilizer N recommendations. The objective of this study was to determine (i) if surface clay content can be used as an auxiliary variable for estimating spatial variability of soil NO3–N, and (ii) if this information is useful for variable rate N fertilization of non-irrigated corn [Zea mays (L.)] in south central Texas, USA across years. A 64 ha corn field with variable soil type and N fertility level was used for this study during 2004–2007. Plant and surface and sub-surface soil samples were collected at different grid points and analyzed for yield, soil N parameters and texture. A uniform rate (UR) of 120 kg N ha−1 in 2004 and variable rates (VAR) of 0, 60, 120, and 180 kg N ha−1 in 2005 through 2007 were applied to different sites in the field. Distinct yield variation was observed over this time period. Yield and soil surface clay content and soil N parameters were strongly spatially structured. Corn grain yield was positively related to residual NO3–N with depth and either negatively or positively related to clay content depending on precipitation. Residual NO3–N to 0.60 and 0.90 m depths was more related to corn yield than from shallower depths. The relationship of clay content with soil NO3–N was weak and not temporally stable. Yield response to N rate also varied temporally. Supply of available N with depth, soil texture and growing season precipitation determined proper N management for this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, J. P. E. (1982). Soil respiration. In A. L. Page, R. H. Miller, & R. D. Keeney (Eds.), Methods of soil analysis, part 2. Agronomy Monograph 9 (2nd ed., pp. 831–866). Madison, WI, USA: ASA, SSSA.

  • Baxter, S. J., Oliver, M. A., & Gaunt, J. (2003). A geostatistical analysis of the spatial variation of soil mineral nitrogen and potentially available nitrogen within an arable field. Precision Agriculture, 4, 213–226.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of American Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Chen, F., Kissel, D. E., West, L. T., & Adkins, W. (2004). Field scale mapping of surface soil clay concentration. Precision Agriculture, 5, 7–26.

    Article  Google Scholar 

  • Cox, M. S., Gerard, P. D., Wardlaw, M. C., & Abshire, M. J. (2003). Variability of selected soil properties and their relationships with soybean yield. Soil Science Society of America Journal, 67, 1296–1302.

    Article  CAS  Google Scholar 

  • Day, P. R. (1965). Particle fractionation and particle-size analysis. In C. A. Black, D. D. Evans, L. E. Ensminger, J. L. White, & F. E. Clark (Eds.), Methods of soil analysis, part 1. Agronomy Monograph 9 (1st ed., pp. 545–567). Madison, WI, USA: ASA, SSSA.

  • Delin, S., & Lindén, B. (2002). Relationship between net nitrogen mineralization and soil characteristics within an arable field. Acta Agricultural Scandinavica, 52, 78–85.

    CAS  Google Scholar 

  • Derby, N. E., Casey, F. X. M., & Franzen, D. E. (2007). Comparison of nitrogen management zone delineation methods for corn grain yield. Agronomy Journal, 99, 405–414.

    Article  CAS  Google Scholar 

  • Diker, K., Heermann, D. F., & Brodahl, M. K. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture, 5, 435–444.

    Article  Google Scholar 

  • Dobermann, A., & Ping, J. L. (2004). Geostatistical integration of yield monitor data and remote sensing improves yield maps. Agronomy Journal, 96, 285–297.

    Article  Google Scholar 

  • Eghball, B., Ferguson, R. B., Varvel, G. E., Hergert, G. W., & Gotway, C. A. (1997). Fractal characterization of spatial and temporal variability in site-specific and long term studies. In M. M. Novak & T. G. Dewey (Eds.), Fractal frontiers (pp. 339–348). Singapore: World Scientific.

    Google Scholar 

  • Eghball, B., Schepers, J. S., Neghaban, M., & Schlemmer, M. R. (2003). Spatial and temporal variability and corn yield: Multifractal analysis. Agronomy Journal, 95, 339–346.

    Article  Google Scholar 

  • Franzen, D. W., Hopkins, D. H., Sweeney, M. D., Ulmer, M. K., & Halvorson, A. D. (2002). Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agronomy Journal, 94, 381–389.

    Article  Google Scholar 

  • Franzluebbers, A. J., Hons, F. M., & Zuberer, D. A. (1994a). Long-term changes in soil carbon and nitrogen pools in wheat management systems. Soil Science Society of America Journal, 58, 1639–1645.

    Article  CAS  Google Scholar 

  • Franzluebbers, A. J., Hons, F. M., & Zuberer, D. A. (1994b). Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems. Soil Biology and Biochemistry, 26, 1469–1475.

    Article  CAS  Google Scholar 

  • Han, S., Schneider, S. M., & Evans, R. G. (2003). Evaluating cokriging for improving soil nutrient sampling efficiency. Transactions of the American Society of Agricultural Engineer, 46, 845–849.

    Google Scholar 

  • Inman, D., Khosla, R., Westfall, D. G., & Reich, R. (2005). Nitrogen uptake across site specific management zones in irrigated corn production systems. Agronomy Journal, 97, 169–176.

    Article  CAS  Google Scholar 

  • Iowa State University. (1993). How a corn plant develops. Special Report No. 48. Available at http://maize.agron.iastate.edu/corngrows.html#v9mg [verified 3 Jan. 2007]. Ames, IA: Cooperative Extension Service.

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. New York, NY: Oxford University Press.

    Google Scholar 

  • Johnson, C. K., Mortensen, D. A., Wienhold, B. J., Shanahan, J. F., & Doran, J. W. (2003). Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agronomy Journal, 95, 303–315.

    Article  Google Scholar 

  • Katsvario, T. W., Cox, W. J., & Van Es, H. M. (2003). Spatial growth and nitrogen uptake variability of corn at two nitrogen levels. Agronomy Journal, 95, 1000–1011.

    Article  Google Scholar 

  • Khosla, R., Fleming, K., Delgado, J. A., Shaver, T., & Westfall, D. G. (2002). Use of site specific management zones to improve nitrogen management for precision agriculture. Journal of Soil and Water Conservation, 57, 515–518.

    Google Scholar 

  • Khosla, R., Westfall, D. G., Reich, R., & Inman, D. (2006). Temporal and spatial stability of soil test parameters used in precision agriculture. Communication in Soil Science and Plant Analysis, 37, 2127–2136.

    Article  CAS  Google Scholar 

  • Koch, B., Khosla, R., Frasier, W. M., Westfall, D. G., & Inman, D. (2004). Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agronomy Journal, 96, 1572–1580.

    Article  Google Scholar 

  • Kravchenko, A. N., & Bullock, D. G. (2000). Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal, 92, 75–83.

    Google Scholar 

  • Kravchenko, A. N., Robertson, G. P., Thelen, K. D., & Harwood, R. R. (2005). Management, topographical, and weather effects on spatial variability of crop grain yields. Agronomy Journal, 97, 514–523.

    Article  Google Scholar 

  • Machado, S., Bynum, E. D., Archer, T. L., Lascano, R. J., Wilson, L. T., Bordovsky, J., et al. (2002). Spatial and temporal variability of corn growth and grain yield. Crop Science, 42, 1564–1576.

    Article  Google Scholar 

  • Mahmoudjafari, M., Kluitenberg, G. J., Havlin, J. L., Sisson, J. B., & Schwab, A. P. (1997). Spatial variability of nitrogen mineralization at the field scale. Soil Science Society of America Journal, 61, 1214–1221.

    Article  CAS  Google Scholar 

  • Mamo, M., Malzer, G. L., Mulla, D. J., Huggins, D. R., & Strock, J. (2003). Spatial and temporal variation in economically optimum nitrogen rate for corn. Agronomy Journal, 95, 958–964.

    Article  Google Scholar 

  • McFarland, M. L., Hons, F. M., & Saladino, V. A. (1990). Effects of furrow diking and tillage on corn grain yield and nitrogen accumulation. Agronomy Journal, 83, 382–386.

    Article  Google Scholar 

  • Miao, Y., Mulla, D. L., Batchelor, W. D., Paz, J. O., Robert, P. C., & Wiebers, M. (2006). Evaluating management zone optimal nitrogen rates with a crop growth model. Agronomy Journal, 98, 545–553.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1980). Total nitrogen analysis for soil and plant tissues. Journal of the Association of Official Analytical Chemists, 63, 770–778.

    CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and soil organic matter. In A. L. Page, R. H. Miller, & R. D. Keeney (Eds.), Methods of soil analysis, part 2. Agronomy Monograph 9 (2nd ed., pp. 539–577). Madison, WI, USA: ASA, SSSA.

  • Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67, 1–85.

    Article  Google Scholar 

  • Rover, M., Heinemyer, O., Munch, J. C., & Kaiser, E. A. (1999). Spatial heterogeneity within plow layer: High variability of N2O emission rates. Soil Biology and Biochemistry, 31, 167–173.

    Article  Google Scholar 

  • Sawyer, J. E. (1994). Concepts of variable rate technology with consideration for fertilizer application. Journal of Production Agriculture, 7, 195–201.

    Google Scholar 

  • Scharf, P. C., Kitchen, N. R., Sudduth, K. A., & Davis, J. G. (2006). Spatially variable corn yield is a weak predictor of optimal nitrogen rate. Soil Science Society of America Journal, 70, 2154–2160.

    Article  CAS  Google Scholar 

  • Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, S. H., & Luchiari, A., Jr. (2004). Appointments of management zones for characterizing spatial variability of soil properties and irrigated corn yield across years. Agronomy Journal, 96, 195–203.

    Article  Google Scholar 

  • Schmidt, J. P., DeJoia, A. J., Ferguson, R. B., Taylor, R. K., Young, R. K., & Havlin, J. L. (2002). Corn yield response to nitrogen at multiple in-field locations. Agronomy Journal, 94, 798–806.

    Article  Google Scholar 

  • Shahandeh, H., Wright, A. L., Hons, F. M., & Lascano, R. J. (2005). Spatial and temporal variation of soil nitrogen parameters related to soil texture and corn yield. Agronomy Journal, 97, 772–782.

    Article  Google Scholar 

  • Technicon Industrial Systems. (1977a). Determination of nitrogen in BS digests. Method 334-74 W/B. NY: Tarrytown.

  • Technicon Industrial Systems. (1977b). Nitrate and nitrite in soil extracts. Method 487-77A. NY: Tarrytown.

  • Wibawa, W. D., Dludlu, D. L., Swenson, L. J., Hopkins, D. G., & Danke, W. C. (1993). Variable fertilizer application based on yield goal, soil fertility, and soil map unit. Journal of Production Agriculture, 6, 255–261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shahandeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahandeh, H., Wright, A.L. & Hons, F.M. Use of soil nitrogen parameters and texture for spatially-variable nitrogen fertilization. Precision Agric 12, 146–163 (2011). https://doi.org/10.1007/s11119-010-9163-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9163-8

Keywords

Navigation