Abstract
m-subharmonic functions are the right class of admissible solutions to the complex Hessian equation. In this paper, we generalize the definition of the complex Hessian operator to some unbounded m-subharmonic functions, and we prove that the complex Hessian operator is continuous on the monotonically decreasing sequences of m-subharmonic functions. Moreover we establish the Lelong-Jensen type formula and introduce the Lelong number for m-subharmonic functions. A useful inequality for the mixed Hessian operator is showed.
Similar content being viewed by others
References
Sadullaev, A., Abdullaev, B.: Potential theory in the class of m-subharmonic functions. Tr. Mat. Inst. Steklova 279, 166–192 (2012)
Sadullaev, A., Abdullaev, B.: Capacities and Hessians in the class of m-subharmonic functions. Dokl. Akad. Nauk 448, 515–517 (2013)
Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1–44 (1976)
Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)
Blocki, Z.: Estimates for the complex Monge-Ampère operator. Bull. Polish Acad. Sci. Math. 41, 151–157 (1993)
Blocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735–1756 (2005)
Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985)
Chou, K.-S., Wang, X.-J.: Variational theory for Hessian equations. Comm. Pure Appl. Math. 54, 1029–1064 (2001)
Demailly, J.P.: Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mém. Soc. Math. France (N.S.) 19, 1–124 (1985)
Demailly, J.P.: Mesures de Monge-Ampère et mesures pluriharmoniques. Math. Z. 194, 519–564 (1987)
Demailly, J.P.: Potential Theory in Several Complex Variables. Available online at: http://www-fourier.ujf-grenoble.fr/demailly/documents.html
Demailly, J.P.: Monge-Ampère operators, Lelong numbers and intersection theory. Complex analysis and geometry, pp. 115–193. Univ. Ser. Math.,Plenum, NewYork (1993)
Demailly, J.P.: Complex Analytic and Differential Geometry, book available online at: http://www-fourier.ujf-grenoble.fr/demailly/documents.html
Dinew, S., Kolodziej, S.: Liouville Calabi-Yau Type Theorems for Complex Hessian Equations. arXiv:1203.3995v1
Dinew, S., Kolodziej, S.: A priori estimates for complex Hessian equations. Anal. PDE 7, 227–244 (2014)
Hou, Z.: Complex Hessian equation on Kähler manifold. Int. Math. Res. Not. 16, 3098–3111 (2009)
Hou, Z., Ma, X.-N., Wu, D.: A second order estimate for complex Hessian equations on a compact Kähler manifold. Math. Res. Lett. 17, 547–561 (2010)
Ivochkina, N., Trudinger, N.S., Wang, X.-J.: The Dirichlet problem for degenerate Hessian equations. Comm. Partial Diff. Equations 29, 219–235 (2004)
Klimek, M.: Pluripotential Theory. Clarendon Press (1991)
Labutin, D.: Potential estimates for a class of fully nonlinear elliptic equations. Duke Math. J. 111, 1–49 (2002)
Lelong, P.: Fonctionnelles analytiques et fonctions enti`eres (n variables), Séminaire de Mathématiques Supérieures, No. 13 (Été, 1967), Les Presses de \(l^{\prime }\)Université de Montréal. Montreal, Que., 298 (1968)
Lelong, P., Gruman, L.: Entire Functions of Several Complex Variables. Springer-Verlag (1986)
Li, S.-Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8(1), 87–106 (2004)
Lu, H.C.: Viscosity solutions to complex Hessian equations. J. Funct. Anal. 264, 1355–1379 (2013)
Lu, H.C.: Solutions to degenerate complex Hessian equations. J. Math. Pures Appl. 100, 785–805 (2013)
Lu, H.C.: A Variational Approach to Complex Hessian Equations in \(\mathbb {C}^{n}\), arXiv: 1301.6502
Nguyen, N.-C.: Subsolution theorem for the complex Hessian equation, Univ. Iagel. Acta Math 50, 69–88 (2013)
Nguyen, N.-C.: Hölder continuous solutions to complex Hessian equations. Potential Anal. 41, 887–902 (2014)
Plis, S.: The Smoothing of m-subharmonic Functions. arXiv: 1312.1906
Trudinger, N.S., Wang, X.J.: Hessian measures I. Topol. Methods Nonlinear Anal. 19, 225–239 (1997)
Trudinger, N.S., Wang, X.J.: Hessian measures II. Ann. Math. 150, 579–604 (1999)
Trudinger, N.S., Wang, X.J.: Hessian measures III. J. Funct. Anal. 193, 1–23 (2002)
Wan, D.: Estimates for k-Hessian operator and some applications. Czech. Math. J. 63, 547–564 (2013)
Wan, D., Wang, W.: Lelong-Jensen type formula, k-Hessian boundary measure and Lelong number for k-convex functions. J. Math. Pures Appl. 99, 635–654 (2013)
Wang, X.J.: The k-Hessian equation, Geometric Analysis and PDEs. Lect. Not. Math 1977, 177–252 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by Natural Science Foundation of SZU (grant no. 201424) and National Nature Science Foundation in China (No. 11401390; No. 11171298).
Rights and permissions
About this article
Cite this article
Wan, D., Wang, W. Complex Hessian Operator and Lelong Number for Unbounded m-subharmonic Functions. Potential Anal 44, 53–69 (2016). https://doi.org/10.1007/s11118-015-9498-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11118-015-9498-x