Skip to main content
Log in

Kolmogorov–Chentsov Theorem and Differentiability of Random Fields on Manifolds

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

A version of the Kolmogorov–Chentsov theorem on sample differentiability and Hölder continuity of random fields on domains of cone type is proved, and the result is generalized to manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Adler, J.R.: The Geometry of Random Fields. Reprint of the 1981 original ed. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010)

    MATH  Google Scholar 

  3. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  4. Brézis, H.: How to recognize constant functions. A connection with Sobolev spaces. Uspekhi Mat. Nauk. 57:4(346), 59–74 (2002)

    Article  Google Scholar 

  5. Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(1), 216–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chentsov, N.N.: Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the heuristic approach to the Kolmogorov–Smirnov tests. Theory Probab. Appl. 1(1), 140–144 (1956)

    Article  Google Scholar 

  7. Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications. Wiley, New York (1967)

    MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  9. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  10. Hoffmann-Jørgensen, J.: Stochastic Processes on Polish Spaces. Åarhus Universitet, Matematisk Institut, Åarhus (1991)

  11. Khoshnevisan, D.: Multiparameter Processes. An Introduction to Random Fields. Springer Monographs in Mathematics. Springer, New York (2002)

    Google Scholar 

  12. Klingenberg, W.P.A.: Riemannian Geometry. de Gruyter Studies in Mathematics, vol. 1, 2nd edn. Walter de Gruyter & Co., Berlin (1995)

    Google Scholar 

  13. Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere: regularity, fast simulation, and stochastic partial differential equations. SAM Report 2013-15. arXiv:1305.1170 [math.PR] (2012)

  14. Lang, S.: Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)

    Book  Google Scholar 

  15. Lee, J.M.: Manifolds and Differential Geometry, Graduate Studies in Mathematics, vol. 107. American Mathematical Society, Providence (2009)

    Google Scholar 

  16. Loève, M.: Probability Theory II, Graduate Texts in Mathematics, vol. 46, 4th edn. Springer, New York (1978)

    Google Scholar 

  17. Mittmann, K., Steinwart, I.: On the existence of continuous modifications of vector-valued random fields. Georgian Math. J. 10(2), 311–317 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Nousiainen, T., McFarquhar, G.M.: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci. 61(18), 2229–2248 (2004)

    Article  Google Scholar 

  19. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach. Encyclopedia of Mathematics and Its Applications, vol. 113. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  20. Potthoff, J.: Sample properties of random fields I: Separability and measurability. Comm. Stoch. Anal. 3(3), 143–153 (2009)

    Google Scholar 

  21. Potthoff, J.: Sample properties of random fields II: Continuity. Comm. Stoch. Anal. 3(1), 331–348 (2009)

    Google Scholar 

  22. Potthoff, J.: Sample properties of random fields III: Differentiability. Comm. Stoch. Anal. 4(3), 335–353 (2010)

    MathSciNet  Google Scholar 

  23. Schilling, R.L.: Sobolev embedding for stochastic processes. Expo. Math. 18(3), 239–242 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Slutsky, E.: Qualche proposizione relativa alla teoria delle funzioni aleatorie. Giorn. Ist. Ital. Attuari. 8, 183–199 (1937)

    Google Scholar 

  25. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  26. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge. Translated from the German by C. B. Thomas and M. J. Thomas (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, R., Lang, A. Kolmogorov–Chentsov Theorem and Differentiability of Random Fields on Manifolds. Potential Anal 41, 761–769 (2014). https://doi.org/10.1007/s11118-014-9392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9392-y

Keywords

Mathematics Subject Classifications (2010)

Navigation