Skip to main content
Log in

Increasing functions and inverse Santaló inequality for unconditional functions

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let \(\phi: {\mathbb{R}}^n\to {\mathbb{R}}\cup\{+\infty\}\) be a convex function and \(\mathcal{L}\phi\) be its Legendre tranform. It is proved that if \(\phi\) is invariant by changes of signs, then \(\int e^{-\phi}\int e^{-\mathcal{L}\phi} \ge 4^n\). This is a functional version of the inverse Santaló inequality for unconditional convex bodies due to J. Saint Raymond. The proof involves a general result on increasing functions on \(\mathbb{R}^{n} \times \mathbb{R}^n\) together with a functional form of Lozanovskii’s lemma. In the last section, we prove that for some c > 0, one has always \(\int e^{-\phi}\int e^{-\mathcal{L}\phi} \ge c^n\). This generalizes a result of B. Klartag and V. Milman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Artstein, M. Klartag, V. Milman, The Santaló point of a function and a functional form of Santaló inequality, Mathematika, 51 (2004), 33–48.

  2. K. Ball, Isometric problems in ℓ p and sections of convex sets, Ph.D Dissertation, Cambridge (1986).

  3. W. Blaschke, Über affine Geometrie 7: Neue Extremeigenschaften von Ellipse und Ellipsoid, Wilhelm Blaschke Gesammelte Werke 3, Thales Verlag, Essen (1985), pp. 246–258.

  4. B. Bollobás, I. Leader, Products of unconditional bodies, Oper. Theory Adv. Appl., 77 (1995), 13–24.

  5. B. Bollobás, I. Leader, A.J. Radcliffe, Reverse Kleitman inequalities, Proc. Lond. Math. Soc. 58 (3) (1989), 153–168.

  6. J. Bourgain, V.D. Milman, New volume ratio properties for convex symmetric bodies in R n, Invent. Math., 88(2) (1987), 319–340.

    Google Scholar 

  7. M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math., 69(6) (1997), 515–522.

    Google Scholar 

  8. M. Fradelizi, M. Meyer, Some functional forms of Blaschke-Santaló inequality, Math. Z., 256 (2007), 379–395.

    Google Scholar 

  9. M. Fradelizi, M. Meyer, Some functional form of inverse Santaló inequality (in preparation).

  10. B. Klartag, V. Milman, Geometry of log-concave functions and measures, Geom. Dedic., 112 (2005), 169–182.

  11. G. Ya. Lozanovskii, On some Banach lattices, Siberian, Math. J., 10 (1969), 419–430.

  12. K. Mahler, Ein Übertragungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fys., 68 (1939), 93–102.

  13. M. Meyer, Une caractérisation volumique de certains espaces normés de dimension finie, Isr. J. Math., 55(3) (1986), 317–326.

    Google Scholar 

  14. J. Saint Raymond, Sur le volume des corps convexes symétriques. Séminaire d’Initiation à l’Analyse, 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, Paris (1981).

  15. S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis, J. Lond. Math. Soc., 36 (1987), 126–136.

    Google Scholar 

  16. L.A. Santaló, An affine invariant for convex bodies of n-dimensional space. Port. Math. 8, (1949), 155–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Fradelizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fradelizi, M., Meyer, M. Increasing functions and inverse Santaló inequality for unconditional functions. Positivity 12, 407–420 (2008). https://doi.org/10.1007/s11117-007-2145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-007-2145-z

Mathematics Subject Classification (2000)

Keywords

Navigation