Skip to main content
Log in

Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose an all-optical 8-to-3 encoder based on photonic crystal. The structure includes 17 waveguides to make the appropriate connections between the input and the output ports. Interference at cross-connects of the waveguides results in light propagation in the desired paths. This issue reduces the needed optical intensity at input ports as well as 100 mW/μm2. Low-power operation of the structure avoids the occurrence of nonlinear effects. Also, neither resonant cavity nor resonant ring is employed in the structure which makes possible to operate at a wide range of photonic bandgaps. The maximum delay time for the presented device is obtained about 5 ps. The total footprint of the proposed structure is 510 μm2, which means it can be employed in optical integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  2. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  3. Diaz-Valencia, B.F., Calero, J.M.: Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C Supercond. 505, 74 (2014)

    Article  Google Scholar 

  4. Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Int. J. Light Electron Opt. 123, 534 (2012)

    Article  Google Scholar 

  5. Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1 (2013)

    Article  Google Scholar 

  6. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Andalib, A.: Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J. Opt. Commun. 36, 1 (2015)

    Article  Google Scholar 

  7. Noori, M., Soroosh, M.: A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Int. J. Light Electron Opt. 126, 4775 (2015)

    Article  Google Scholar 

  8. Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Int. J. Light Electron Opt. 124, 2639 (2013)

    Article  Google Scholar 

  9. Zavvari, M., Mehdizadeh, F.: Photonic crystal cavity with L3-defect for resonant optical filtering. Frequenz 68, 519 (2014)

    Article  Google Scholar 

  10. Zamani, M.: Photonic crystal-based optical filters for operating in second and third optical fiber windows. Superlattices Microstruct. 92, 157 (2016)

    Article  Google Scholar 

  11. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15, 1 (2013)

    Article  Google Scholar 

  12. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostruct. 56, 211 (2014)

    Article  Google Scholar 

  13. Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Int. J. Light Electron Opt. 125, 1534 (2014)

    Google Scholar 

  14. Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Int. J. Light Electron Opt. 123, 167 (2012)

    Article  Google Scholar 

  15. Youcef Mahmoud, M., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368 (2012)

    Article  Google Scholar 

  16. Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Int. J. Light Electron Opt. 124, 2864 (2013)

    Article  Google Scholar 

  17. Taalbi, A., Bassou, G., Youcef Mahmoud, M.: New design of channel drop filters based on photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 824 (2013)

    Article  Google Scholar 

  18. Alipour-Banaei, H., Hassangholizadeh-Kashtiban, M., Mehdizadeh, F.: WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure. Int. J. Light Electron Opt. 124, 4416 (2013)

    Article  Google Scholar 

  19. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filters based on fractal structures. Phys. E Low Dimens. Syst. Nanostruct. 63, 304 (2014)

    Article  Google Scholar 

  20. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013)

    Article  Google Scholar 

  21. Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324 (2015)

    Google Scholar 

  22. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 127, 8706 (2016)

    Article  Google Scholar 

  23. Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultracompact wavelength division demultiplexer based on photonic band gap. Opt. Commun. 285, 274 (2012)

    Article  Google Scholar 

  24. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Netw. Commun. 29, 146 (2014)

    Article  MATH  Google Scholar 

  25. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65 (2016)

    Article  Google Scholar 

  26. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 5964 (2013)

    Article  MATH  Google Scholar 

  27. Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 5923 (2013)

    Article  Google Scholar 

  28. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt. Quantum Electron. 45, 1 (2013)

    Article  Google Scholar 

  29. Alipour-Banaei, H., Mehdizadeh, F.: High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Netw. Commun. 33, 152 (2017)

    Article  Google Scholar 

  30. Selim, R., Pinto, D., Obayya, S.S.A.: Novel fast photonic crystal multiplexer–demultiplexer switches. Opt. Quantum Electron. 42, 425 (2011)

    Article  Google Scholar 

  31. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64, 1233 (2017)

    Article  MathSciNet  Google Scholar 

  32. Wang, T., Li, Q., Gao, D.: Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis. Chin. Sci. Bull. 54, 3662 (2009)

    Google Scholar 

  33. Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109 (2014)

    Article  MATH  Google Scholar 

  34. Yanik, M.F., Fan, S., Soljačić, M., Joannopoulos, J.D.: All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28, 2506 (2003)

    Article  Google Scholar 

  35. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2*4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 48, 20 (2015)

    Article  Google Scholar 

  37. Haq Shaik, E., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1 (2016)

    Article  Google Scholar 

  38. Pirzadi, M., Mir, A., Bodaghi, D.: Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photonics Technol. Lett. 28, 2387 (2016)

    Article  Google Scholar 

  39. Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 377, 148 (2014)

    Google Scholar 

  40. Singh, B.R., Rawal, S.: Photonic-crystal-based all-optical NOT logic gate. J. Opt. Soc. Am. A 32, 2260 (2015)

    Article  Google Scholar 

  41. Jiang, Y.C., Liu, S.B., Zhang, H.F., Kong, X.K.: Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure. Opt. Commun. 332, 359 (2014)

    Article  Google Scholar 

  42. Fasihi, K.: Design and simulation of linear logic gates in the two-dimensional square-lattice photonic crystals. Int. J. Light Electron Opt. 127, 4669 (2016)

    Article  Google Scholar 

  43. Salmanpour, A., Mohammadnejad, S., Omran, P.T.: All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators. Opt. Quantum Electron. 47, 3689 (2015)

    Article  MATH  Google Scholar 

  44. Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027 (2013)

    Article  Google Scholar 

  45. Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231 (2016)

    Article  Google Scholar 

  46. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Int. J. Light Electron Opt. 130, 1214 (2017)

    Article  MATH  Google Scholar 

  47. Afzal, S., Ahmadi, V., Ebnali-Heidari, M.: All-optical tunable photonic crystal nor gate based on the nonlinear Kerr effect in a silicon nanocavity. J. Opt. Soc. Am. B 30, 2535 (2013)

    Article  Google Scholar 

  48. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Int. J. Light Electron Opt. 125, 5701 (2014)

    Article  Google Scholar 

  49. Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35 (2016)

    Google Scholar 

  50. Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 83, 101 (2016)

    Article  Google Scholar 

  51. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 4700311 (2017)

    Article  Google Scholar 

  52. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)

    Article  Google Scholar 

  53. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10 (2008)

    Article  Google Scholar 

  54. Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low Dimens. Syst. Nanostruct. 75, 77 (2016)

    Article  Google Scholar 

  55. Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440 (2016)

    Article  Google Scholar 

  56. Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Int. J. Light Electron Opt. 126, 2368 (2015)

    Article  Google Scholar 

  57. Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735 (2015)

    Article  Google Scholar 

  58. Lee, S.G., Oh, S.S., Kim, J., Park, H.Y., Kee, C.S.: Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals. Appl. Phys. Lett. 87, 181106 (2005)

    Article  Google Scholar 

  59. Noori, M., Soroosh, M., Baghban, H.: All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring. Opt. Eng. 54, 037111 (2015)

    Article  Google Scholar 

  60. Yu, X., Fan, S.: Bends and splitters for self-collimated beams in photonic crystals. Appl. Phys. Lett. 83, 3251 (2003)

    Article  Google Scholar 

  61. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29 (2017)

    Article  Google Scholar 

  62. Salimzadeh, A., Alipour-Banaei, H.: An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Opt. Commun. 410, 793 (2018)

    Article  Google Scholar 

  63. Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)

    Article  Google Scholar 

  64. Tavlove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood (1995)

    Google Scholar 

  65. Bucher, K., Bruns, J., Wagemann, H.G.: Absorption coefficient of silicon: an assessment of measurements and the simulation of temperature variation. J. Appl. Phys. 75, 1127 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soroosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddadan, F., Soroosh, M. Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides. Photon Netw Commun 37, 83–89 (2019). https://doi.org/10.1007/s11107-018-0795-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0795-3

Keywords

Navigation