Skip to main content
Log in

Smart home multi-device bidirectional visible light communication

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Driven by increase in automation, smart homes play an important role in today’s human life. This paper presents a new model for smart home technologies based on multi-device bidirectional visible light communication (VLC). For multiple devices and users, orthogonal code-based wavelength division (color beams) full-duplexed bidirectional VLC link is proposed. The color beams from RGB LEDs are utilized to transmit data and synchronize multi-device transmission. To enhance the performance of the proposed model, receiver diversity is also employed. Performance evaluation reveals that the proposed VLC-based model for smart homes is efficient with superior BER performance in a typical smart home environment except for the far corners. The maximum achievable data rate for each user up to four users is found to be 24 Mbps at both uplink and downlink transmissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kim J.E., Boulos G., Yackovich J., Barth T., Beckel C., Mosse D.: Seamless integration of heterogeneous devices and access control in smart homes. In: Proceedings of the International Conference on Intelligent Environment, Guanajuato (2012)

  2. Vijayananda W.M.T., Samarakoon K., Ekanayake J.: Development of a demonstration rig for providing primary frequency response through smart meters. In: Proceedings of the International Universities Power Engineering Conference, Cardiff, Wales (2010)

  3. Gill, K., Yang, S.H., Yao, F., Liu, Y., Liu, Y.L., Tsang, H.K.: A ZigBee-based home automation system. IEEE Trans. Consum. Electron. 55(2), 422–430 (2009)

    Article  Google Scholar 

  4. Han, J., Choi, C.S., Park, W.K., Lee, I., Kim, S.H.: Smart home energy management system including renewable energy based on ZigBee and PLC. IEEE Trans. Consum. Electron. 60(2), 198–202 (2014)

    Article  Google Scholar 

  5. Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)

    Article  Google Scholar 

  6. Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., Haas, H.: VLC: beyond point-to-point communication. IEEE Commun. Mag. 52(7), 98–105 (2014)

    Article  Google Scholar 

  7. Jovicic, A., Junyi, L., Richardson, T.: Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51(12), 26–32 (2013)

    Article  Google Scholar 

  8. Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: Visible light communication based motion detection. Opt. Express 23(14), 18769–18776 (2015)

    Article  Google Scholar 

  9. Pisek E., Rajagopal S., Abu-Surra S.: Gigabit rate mobile connectivity through visible light communication. In: Proceedings of the IEEE International Conference on Communications, Ottawa, pp. 3122–3127 (2012)

  10. Cossu, G., Khalid, A.M., Choudhury, P., Corsini, R., Ciaramella, E.: 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 20(26), B501–B506 (2012)

    Article  Google Scholar 

  11. Han, P.P., Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: Color clustered multiple-input multiple-output visible light communication. J. Opt. Soc. Korea 19(1), 74–79 (2015)

    Article  Google Scholar 

  12. Rajagopal, S., Roberts, R.D., Lim, S.: IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50(3), 72–82 (2012)

    Article  Google Scholar 

  13. Bandara, K., Chung, Y.H.: Novel color-clustered multiuser visible light communication. Trans. Emerg. Telecommun. Technol. 25(6), 579–590 (2014)

    Article  Google Scholar 

  14. Luna-Rivera, J.M., Perez-Jimenez, R., Rabadan-Borjes, J., Rufo-Torres, J., Guerra, V., Suarez-Rodriguez, C.: Multiuser CSK scheme for indoor visible light communications. Opt. Express 22(20), 24256–24267 (2014)

    Article  Google Scholar 

  15. Liu, Y.F., Yeh, C.H., Chow, C.W., Liu, Y., Liu, Y.L., Tsang, H.K.: Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Opt. Express 20(21), 23024–23091 (2012)

    Google Scholar 

  16. Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network. Opt. Commun. 339, 153–156 (2015)

    Article  Google Scholar 

  17. Tiwari S.V., Sewaiwar A., Chung Y.H.: Smart home technologies using visible light communication. In: Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, USA, pp. 404–405 (2015)

  18. Henderson, K.W.: Some notes on the walsh functions. IEEE Trans. Electron. Comput. EC–13(1), 50–52 (1964)

    Article  MATH  Google Scholar 

  19. Tiwari, S.V., Sewaiwar, A., Chung, Y.H.: Optical bidirectional beacon based visible light communications. Opt. Express 23(20), 26551–26564 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Grant of Pukyong National University (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Ho Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S.V., Sewaiwar, A. & Chung, YH. Smart home multi-device bidirectional visible light communication. Photon Netw Commun 33, 52–59 (2017). https://doi.org/10.1007/s11107-015-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0600-5

Keywords

Navigation