Skip to main content
Log in

A Transient Transformation System for the Functional Characterization of Genes Involved in Stress Response

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In this study, we developed a simple and efficient transient transformation system, which can be used in homologous expression or reverse genetic study of the plants. A system for characterizing gene function in response to stress tolerance was also developed based on this transformation method. The overexpression and RNAi-silencing of a bZIP gene from Tamarix hispida, ThbZIP1, were performed in T. hispida using this transformation method. Real-time PCR showed that the expression of ThbZIP1 was highly up- and down-regulated in the plants with overexpression and RNAi-silenced expression of ThbZIP1, respectively, when compared with control plants (transiently transformed with empty pROK2). A physiological study showed that ThbZIP1 can enhance the activities of both peroxidase (POD) and superoxide dismutase (SOD), and decrease electrolyte leakage rate and levels of reactive oxygen species (ROS) and malondialdehyde (MDA) under salt stress conditions. Furthermore, ThbZIP1 is found to mediate stress tolerance by regulating the expression of SOD and POD genes. These results suggested that this transient transformation system is an effective method for determining the function of a gene in response to abiotic stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dal Santo S, Stampfl H, Krasensky J, Kempa S, Gibon Y, Petutschnig E, Rozhon W, Heuck A, Clausen T, Jonak C (2012) Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in arabidopsis. Plant Cell 24:3380–33992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao CQ, Wang YC, Liu GF, Wang C, Jiang J, Yang CP (2010) Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep 28:77–89

    Article  Google Scholar 

  • Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342:837–838

    Article  CAS  PubMed  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS (2003) Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 278:19406–19415

    Article  CAS  PubMed  Google Scholar 

  • Kirienko DR, Luo A, Sylvester AW (2012) Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study. Plant Physiol 159:1309–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci USA 85(22):8502–8505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH (2005) High throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J 41:162–174

    Article  CAS  PubMed  Google Scholar 

  • Kuttenkeuler D, Boutros M (2004) Genome-wide RNAi as a route to gene function in Drosophila. Brief Funct Genomic Proteomic 3(2):168–176

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Wang YC, Jiang J, Liu GF, Gao CQ, Yang CP (2009a) Identification of genes responsive to salt stress on Tamarix hispida roots. Gene 433:65–71

    Article  CAS  PubMed  Google Scholar 

  • Li J, Park E, von Arnim AG, Nebenführ A (2009b) The FAST technique: a simplified Agrobacteriumbased transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chen X, Wu Y, Wang Y, He Y, Wu Y (2013) Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS ONE 8:2

    Google Scholar 

  • Phillipson JD (2001) Phytochemistry and medicinal plants. Phytochemistry 56:237–243

    Article  CAS  PubMed  Google Scholar 

  • Sheludko YV, Sindarovska YR, Gerasymenko IM, Bannikova MA, Kuchuk NV (2006) Comparison of several Nicotiana species as host for high-scale Agrobacterium-mediated transient expression. Biotechnol Bioeng 96:608–614

    Article  Google Scholar 

  • Simmons CW, VanderGheynst JS, Upadhyaya SK (2009) A model of Agrobacterium tumefaciens vacuum infiltration into harvested leaf tissue and subsequent in planta transgene transient expression. Biotechnol Bioeng 102:965–970

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Eriksson ME (2012) A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides). Plant Methods 8:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Van der Hoorn RA, Laurent F, Roth R, De Wit PJ (2000) Agroinfiltration is a versatile tool that facilitates comparative analysis of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 13:439–446

    Article  PubMed  Google Scholar 

  • VanderGheynst JS, Guo HY, Simmons CW (2008) Response surface studies that elucidate the role of infiltration conditions on Agrobacterium tumefaciens-mediated transient transgene expression in harvested switchgrass (Panicum virgatum). Biomass Bioenergy 32:372–379

    CAS  Google Scholar 

  • Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167:222–230

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato, and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng L, Liu GF, Meng XN, Li YB, Wang YC (2012) A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem Genet 50:761–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Hundred Talents Program of the Chinese Academy of Sciences, and Foundation for the Author of National Excellent Doctoral Dissertation of China (No.200973).

Author Contributions Statement

Y.C. Wang and X.Y. Ji conceived the project and designed experiments. X.Y. Ji, L. Zheng, Y.J. Liu, X.G. Nie and S.N. Liu participated in the experiments. X.Y. Ji performed the data analysis. X.Y. Ji, and Y.C. Wang drafted the manuscript. Y.C. Wang provided reagents and analysis tools.

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, X., Zheng, L., Liu, Y. et al. A Transient Transformation System for the Functional Characterization of Genes Involved in Stress Response. Plant Mol Biol Rep 32, 732–739 (2014). https://doi.org/10.1007/s11105-013-0683-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0683-z

Keywords

Navigation