Skip to main content
Log in

Isolation and Characterization of an AGAMOUS-Like Gene from Magnolia wufengensis (Magnoliaceae)

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The floral homeotic C function gene AGAMOUS (AG) plays crucial roles in Arabidopsis development by specifying stamen and carpel identity, repressing A-class genes, as well as regulating floral meristem determination. Although the function of AG homologs from other core eudicots appears highly conserved, the role of AG orthologs in the design of floral architecture in basal angiosperm remains unknown. We isolated and identified an AG ortholog from Magnolia wufengensis, a woody basal angiosperm belonging to the Magnoliaceae. Sequence and phylogenetic analyses revealed that it is a clade member of the euAG lineage, and hence, the gene is referred to as MAwuAG (M. wu fengensis AGAMOUS). Moreover, two highly conserved motifs specific to C proteins, AG motifs I and II, are found in the C-terminal regions of the MAwuAG protein, but the N-terminal extensions that usually appear in euAG lineage members from eudicots were not found in MAwuAG. The cDNA has the first in-frame ATG immediately preceding the MADS domain. A semi-quantitative PCR analysis showed that the expression of MAwuAG was restricted to reproductive organs of stamens and carpels. The transgenic Arabidopsis containing 35S::MAwuAG displayed extremely early flowering, bigger stamens and carpels, and homeotic conversion of petals into staminoid organs, but ectopic expression of MAwuAG in the first whorls failed to convert the sepals into carpeloid structures that are usually observed in the overexpression transgenic Arabidopsis of AG orthologs from other core eudicots. In addition, the phenotype of the transgenic 35S::MAwuAG Arabidopsis revealed that the abscission of the outer three floral whorls (sepals, petals, and stamens) was inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Chanderbalia AS, Albertc VA, Leebens-Mackd J, Altmane NS, Soltis DE, Soltis PS (2009) Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae). Proc Natl Acad Sci USA 106:8929–8934

    Article  Google Scholar 

  • Chang SJ, Puryear J, Cainey J (1993) A simple and efficient method for RNA isolating from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant J16:735–743

    Article  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Davies B, Cartolano M, Schwarz-Sommer Z (2006) Flower development: the Antirrhinum perspective. Adv Bot Res 44:279–320

    Article  CAS  Google Scholar 

  • De Oliveira RR, Chalfun-Junior A, Paiva LV, Andrade AC (2010) In silico and quantitative analyses of MADS-box genes in Coffea arabica. Plant Mol Biol Rep 28:460–472

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant minipreparation: version II. Plant Mol Biol Rep 1:19–20

    Article  CAS  Google Scholar 

  • Du N, Pijut PM (2010) Isolation and characterization of an AGAMOUS homolog from Fraxinus pennsylvanica. Plant Mol Biol Rep 28:344–351

    Article  CAS  Google Scholar 

  • Endress PK, James A, Doyle JA (2009) Reconstructing the ancestral angiosperm flower and its initial specializations. Am J Bot 96(1):22–66

    Article  PubMed  Google Scholar 

  • Hou J, Gao Z, Zhang Z, Chen S, Ando T, Zhang J, Wang X (2011) Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep 29:473–480

    Article  CAS  Google Scholar 

  • Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 51(6):1029–1045

    Article  PubMed  CAS  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. The Plant J 61:1014–1028

    Article  CAS  Google Scholar 

  • Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. The Plant J 43:724–744

    Article  CAS  Google Scholar 

  • Kitahara K, Hibino Y, Aida R, Matsumoto S (2004) Ectopic expression of the rose AGAMOUS-like MADS-box genes ‘MASAKO C1 and D1’ cause similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Sci 166:1245–1252

    Article  CAS  Google Scholar 

  • Kramer EM, Jaramlllo MA, Di Stillo VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms. Genetics 166:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Anderson JM, Pijut PM (2010) Cloning and characterization of Prunus serotina AGAMOUS, a putative flower homeotic gene. Plant Mol Biol Rep 28:193–203

    Article  CAS  Google Scholar 

  • Lv S, Du X, Lu W, Chong K, Meng Z (2007) Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. Evol Dev 9:92–104

    Article  Google Scholar 

  • Ma LY, Wang LR, He SC, Liu X, Wang XQ (2006a) A new species of Magnolia (Magnoliaceae) from Hubei, China. Bull Bot Res (China) 26(1):4–7

    Google Scholar 

  • Ma LY, Wang LR, He SC, Liu X, Wang XQ (2006b) A new variety of Magnolia (Magnoliaceae) from Hubei, China. Bull Bot Res (China) 26(5):516–519

    Google Scholar 

  • Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C-function activity in maize flower development. Science 274:1537–1540

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised media for rapid growth and bioassay with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pan IL, McQuinn R, Giovannoni JJ, Irish VF (2010) Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  CAS  Google Scholar 

  • Song J, Ma W, Tang Y, Chen Z, Liao J (2010) Isolation and characterization of three MADS-box genes from Alpinia hainanensis (Zingiberaceae). Plant Mol Biol Rep 28:264–276

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Bio Evo 24(8):1596–1599

    Article  CAS  Google Scholar 

  • Teeri TH, Kotilainen M, Uimari A, Ruokolainen S, Ng YP, Malm U, Pollanen E, Broholm S, Laitinen R, Elomaa P, Albert VA (2006) Floral developmental genetics of Gerbera (Asteraceae). Adv Bot Res 44:323–351

    Article  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Whipple CJ, Schmidt RJ (2006) Genetics of grass flower development. Adv Bot Res 44:385–424

    Article  CAS  Google Scholar 

  • Wu X, Shi J, Xi M, Luo Z, Hu X (2010) A B functional gene cloned from lily encodes an ortholog of Arabidopsis PISTILLATA (PI). Plant Mol Biol Rep 28:684–691

    Article  CAS  Google Scholar 

  • Yamaguchi T, Hirano HY (2006) Function and diversification of MADS-box genes in rice. TSW Dev Embryol 1:99–108

    Article  CAS  Google Scholar 

  • Yang Y, Singer SD, Liu Z (2011) Petunia AGAMOUS enhancer-derived chimeric promoters specify a carpel-, stamen-, and petal-specific expression pattern sufficient for engineering male and female sterility in tobacco. Plant Mol Biol Rep 29:162–170

    Article  Google Scholar 

  • Yellina AL, Orashakova S, Lange S, Erdmann R, Leebens-Mack J, Becker A (2010) Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica). EvoDevo 1:13

    Article  PubMed  CAS  Google Scholar 

  • Zahn LM, Feng BM, Ma H (2006) Beyond the ABC-model: regulation of floral homeotic genes. Adv Bot Res 44:164–196

    Google Scholar 

  • Zhang XM, Wang Y, Lv XM, Li H, Sun P, Lu H, Li FL (2009) NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development. J Exp Bot 60:1569–1577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (grant no. 31170625), the Special Foundation of the China Postdoctoral Science Foundation (grant no. 200801048), and the China Postdoctoral Science Foundation (grant no. 20070410038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faju Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Chen, F., Jing, D. et al. Isolation and Characterization of an AGAMOUS-Like Gene from Magnolia wufengensis (Magnoliaceae). Plant Mol Biol Rep 30, 690–698 (2012). https://doi.org/10.1007/s11105-011-0385-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0385-3

Keywords

Navigation