Skip to main content

Advertisement

Log in

Do diversity of plants, soil fungi and bacteria influence aggregate stability on ultramafic Ferralsols? A metagenomic approach in a tropical hotspot of biodiversity

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Understanding how soil aggregate stability (MWD) is influenced by microbial diversity and abundance can be crucial for ecological restoration in severely disturbed areas. We investigated the relationships between plant and soil microbial diversity and MWD of an ultramafic Ferralsol along a vegetational succession gradient in New Caledonia, where wildfires and extensive nickel mining have degraded the landscape.

Methods

Five plant communities were studied. For each one, MWD, soil physicochemical parameters (e.g. soil organic carbon (SOC)), plant root traits and fungal abundance were measured. The diversity and structure of plant and microbial communities were respectively assessed via botanical inventories and a metagenomic approach. A generalized linear model (GLM) was used to assess the influence of diversity indexes on MWD. Constrained ordinations (CCA) were performed to assess the influence of communities’ structures on MWD.

Results

GLM highlighted the linkage between SOC and MWD but did not identify any significant influence of diversity indexes on MWD. CCA revealed a significant influence of communities’ structures, especially the abundance of saprotrophic fungi, on MWD.

Conclusions

We showed that the structure, but not species richness and diversity of plants, soil fungi and bacteria influence aggregate stability on Ferralsols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afnor (2005) NF X 31–515 - Mesure de la stabilité d'agrégats de sols pour l'évaluation de la sensibilité à la battance et à l'érosion hydrique. Afnor, France

  • Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151. https://doi.org/10.1300/J064v14n02_08

    Article  Google Scholar 

  • Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Editions edn, New Caledonia

  • Amundson R, Biardeau L (2018) Soil carbon sequestration is an elusive climate mitigation tool. PNAS 115: 11652–11656. 10.1073/pnas.1815901115

  • Barthès B, Roose E (2002) Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133–149

    Article  Google Scholar 

  • Barton K (2016) {MuMIn}: multi-model inference, {R} package version 1.15.6

  • Bequette F (1997) New Caledonia: threats to biodiversity. UNESCO Cour 50:38–41

    Google Scholar 

  • Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881–888. https://doi.org/10.1007/s10021-015-9869-6

    Article  CAS  Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. https://doi.org/10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Büks F, Rebensburg P, Lentzsch P, Kaupenjohann M (2016) Relation of aggregate stability and microbial diversity in an incubated sandy soil. Soil Discussion. https://doi.org/10.5194/soil-2016-14

  • Caesar-Ton That T, Cochran V (2000) Soil aggregate stabilization by a saprophytic lignin-decomposing basidiomycete fungus I. Microbiological aspects. Biol Fertil Soils 32:374–380

  • Callahan B, McMurdie P, Rosen M, Han A, Johnson A, Holmes S (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone C, Turnbaugh P, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  • Carriconde F, Gardes M, Bellanger J-M, Letellier K, Gigante S, Gourmelon V, Ibanez T, McCoy S, Goxe J, Read J, Maggia L (2019) Host effects in high ectomycorrhizal diversity tropical rainforests on ultramafic soils in New Caledonia. Fungal Ecol 39:201–212. https://doi.org/10.1016/j.funeco.2019.02.006

    Article  Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Chang Biol 21:3200–3209. https://doi.org/10.1111/gcb.12982

    Article  PubMed  Google Scholar 

  • Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134:88–119

  • Corneo P, Pellegrini A, Cappellin L, Gessler C, Pertot I (2014) Moderate warming in microcosm experiment does not affect microbial communities in temperate vineyard soils. Microb Ecol 67:659–670. https://doi.org/10.1007/s00248-013-0357-2

    Article  PubMed  Google Scholar 

  • Demenois J, Carriconde F, Bonaventure P, Maeght J-L, Stokes A, Rey F (2018a) Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol. Geoderma 312:6–16. https://doi.org/10.1016/j.geoderma.2017.09.033

    Article  Google Scholar 

  • Demenois J, Carriconde F, Rey F, Stokes A (2017a) Tropical plant communities modifiy soil aggregate stability along a successional vegetation gradient on a Ferralsol. Ecol Eng 109:161–168. https://doi.org/10.1016/j.ecoleng.2017.07.027

    Article  Google Scholar 

  • Demenois J, Ibanez T, Read DJ, Carriconde F (2017b) Comparison of two monodominant species in New Caledonia: floristic diversity and ecological strategies of Arillastrum gummiferum (Myrtaceae) and Nothofagus aequilateralis (Nothofagaceae) rainforests. Aust J Bot 65:11–21. https://doi.org/10.1071/BT16125

    Article  Google Scholar 

  • Demenois J, Rey F, Ibanez T, Stokes A, Carriconde F (2018b) Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient. Plant Soil 424:319–334. https://doi.org/10.1007/s11104-017-3529

    Article  CAS  Google Scholar 

  • Demenois J, Rey F, Stokes A, Carriconde F (2017c) Does arbuscular and ectomycorrhizal fungal inoculation improve soil aggregate stability? A case study on three tropical species growing in ultramafic Ferralsols. Pedobiologia 64:8–14. https://doi.org/10.1016/j.pedobi.2017.08.003

    Article  Google Scholar 

  • Dignac M-F, Derrien D, Barré P, Barot S, Cécillon L, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, Maron P-A, Nunan N, Roumet C, Basile-Doelsch I (2017) Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron Sustain Dev 37:14. https://doi.org/10.1007/s13593-017-0421-2

    Article  CAS  Google Scholar 

  • Doak D, Bigger D, Harding E, Marvier E, O’Malley R, Thomson D (1998) The statistical inevitability of stability-diversity relationships in community ecology. Am Nat 151:264–276

    Article  CAS  PubMed  Google Scholar 

  • Duchicela J, Vogelsang KM, Schultz PA, Kaonongbua W, Middleton EL, Bever JD (2012) Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytol. https://doi.org/10.1111/j.1469-8137.2012.04233.x

  • Dugain F (1953) Premières observations sur l'érosion en Nouvelle-Calédonie. L'Agronomie Tropicale VIII:466–475

  • Faucon M-P, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 22:385–394. https://doi.org/10.1016/j.tplants.2017.01.005

    Article  PubMed  CAS  Google Scholar 

  • Fujisaki K, Chevallier T, Chapuis-Lardy L, Albrecht A, Razafimbelo T, Masse D, Badiane Ndour Y, Chotte J-L (2018) Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: a synthesis. Agric Ecosyst Environ 259:147–158. https://doi.org/10.1016/j.agee.2017.12.008

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Loreau M (2009) The causes and consequences of compensatory dynamics in ecological communities. Annu Rev Ecol Evol Syst 40:393–414

    Article  Google Scholar 

  • Gould IJ, Quinton JN, Weigelt A, de Deyn GB, Bardgett RD (2016) Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol Lett 19:1140–1149. https://doi.org/10.1111/ele.12652

    Article  PubMed  PubMed Central  Google Scholar 

  • Gourmelon V (2016) Formations végétales et diversité fongique du sol, implications pour la conservation et la restauration écologique. PhD, Université de la Nouvelle-Calédonie, Nouméa, France

  • Gourmelon V, Maggia L, Powell JR, Gigante S, Hortal S, Gueunier C, Letellier K, Carriconde F (2016) Environmental and geographical factors structure soil microbial diversity in New Caledonian ultramafic substrates: a metagenomic approach. PLoS One 11:e0167405. https://doi.org/10.1371/journal.pone.0167405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graf F, Frei M (2013) Soil aggregate stability related to soil density, root length, and mycorrhiza using site-specific Alnus incana and Melanogaster variegatus s.l. Ecol Eng 57:314–323. https://doi.org/10.1016/j.ecoleng.2013.04.037

  • Ihrmark K, Bödeker I, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677. https://doi.org/10.1111/j.1574-6941.2012.01437.x

    Article  PubMed  CAS  Google Scholar 

  • Isnard S, L’huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the new Caledonian hotspot? Plant Soil 403:53–76. https://doi.org/10.1007/s11104-016-2910-5

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Kier G, Kreft H, Lee T, Jetz W, Ibisch P, Nowicki C et al (2009) A global assessment of endemism and species richness across island and mainland regions. PNAS 106:9322–9327. https://doi.org/10.1073/pnas.0810306106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. https://doi.org/10.1007/BF02289565

    Article  Google Scholar 

  • Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28. https://doi.org/10.1139/W10-096

    Article  PubMed  CAS  Google Scholar 

  • Le Bissonnais Y (1996) Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology. Eur J Soil Sci 47:425–437

  • Le Bissonnais Y, Prieto I, Roumet C, Nespoulous J, Metayer J, Huon S, Villatoro M, Stokes A (2018) Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant Soil 424:303–317. https://doi.org/10.1007/s11104-017-3423-6

    Article  CAS  Google Scholar 

  • Lehmann A, Rillig M (2015) Understanding mechanisms of soil biota involvement in soil aggregation: a way forward with saprobic fungi? Soil Biol Biochem 88:298–302

    Article  CAS  Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2013) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. https://doi.org/10.1111/nph.13201

    Article  PubMed  CAS  Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17. https://doi.org/10.1034/j.1600-0706.2000.910101.x

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle D (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Losfeld G, L'Huillier L, Fogliani B, Jaffré T, Grison C (2015) Mining in New Caledonia: environmental stakes and restoration opportunities. Environ Sci Pollut Res 22:5592–5607. https://doi.org/10.1007/s11356-014-3358-x

    Article  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17: 10. Doi: citeulike-article-id:13260424

  • Martin SL, Mooney SJ, Dickinson MJ, West HM (2012) Soil structural responses to alterations in soil microbiota induced by the dilution method and mycorrhizal fungal inoculation. Pedobiologia 55:271–281. https://doi.org/10.1016/j.pedobi.2012.06.001

    Article  Google Scholar 

  • Matheny P, Curtis J, Hofstetter V, Aime M, Moncalvo J, Ge Z, Yang Z, Slot J, Ammirati J, Baroni TJ et al (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995

    Article  PubMed  Google Scholar 

  • McCoy S, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramaficmaquis of New Caledonia. J Biogeogr 26:579– 594. https://doi.org/10.1046/j.1365-2699.1999.00309.x

  • Météo France (2016) http://www.meteo.nc/en-savoir-plus/accueil/actualites/472-bilan-meteorologique-de-l-episode-pluvieux-de-grande-echelle-du-20-au-22-novembre-2016

  • Météo France (2019) www.meteofrance.com/climat/outremer/noumea/98818001/normales

  • Mehra OP (1958) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Morat P, Jaffré T, Tronchet F, Munzinger J, Pillon Y, Veillon JM, Chalopin M (2012) The taxonomic database «FLORICAL» and characteristics of the indigenous flora of New Caledonia. Adansonia 34(2):177–219

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nguyen N, Song Z, Bates S, Branco S, Tedersoo L, Menke J, Schilling J, Kennedy P (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:514–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  • Oades J, Waters A (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828. https://doi.org/10.1071/sr9910815

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, R. P. Minchin, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Vegan: community ecology package. R package version 2.5–4

  • Pansu M, Gautheyrou J (2006) Handbook of Soil Analysis - Mineralogical, Organic and Inorganic Methods. Springer-Verlag, Berlin Heidelberg, Germany

  • Pereira de Castro A, Ferraz Quirino B, Pappas G Jr, Silva Kurokawa A, Leonardecz Neto E, Henrique Krüger R (2008) Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Arch Microbiol 190:129–139. https://doi.org/10.1007/s00203-008-0374-6

    Article  CAS  Google Scholar 

  • Pérès G, Cluzeau D, Menasseri S, Soussana JF, Bessler H, Engels C, Habekost M, Gleixner G, Weigelt A, Weisser WW, Scheu S, Eisenhauer N (2013) Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373:285–299. https://doi.org/10.1007/s11104-013-1791-0

    Article  CAS  Google Scholar 

  • Pivato B, Chemidlin Prévost-Bouré N, Lemanceau P (2015) Microbiome du sol. In: Champomier-Vergès M-C, Zagorec M (eds) La métagénomique - Développements et futures applications. Editions Quae, Versailles, France

  • Pohl M, Alig D, Körner C, Rixen C (2009) Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324:91–102. https://doi.org/10.1007/s11104-009-9906-3

    Article  CAS  Google Scholar 

  • Pohl M, Graf F, Buttler A, Rixen C (2012) The relationship between plant species richness and soil aggregate stability can depend on disturbance. Plant Soil 355:87–102. https://doi.org/10.1007/s11104-011-1083-5

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Read J, Jaffré T (2013) Population dynamics of canopy trees in New Caledonian rain forests: are monodominant Nothofagus (Nothofagaceae) forests successional to mixed rain forests? J Trop Ecol 29:485–499. https://doi.org/10.1017/s0266467413000576

  • Read J, Jaffré T, Ferris JM, Mc Coy S, Hope GS (2006) Does soil determine the boundaries of monodominant rain forest with adjacent mixed rain forest and maquis on ultramafic soils in New Caledonia? J Biogeogr 33:1055–1065

    Article  Google Scholar 

  • Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59

    Article  Google Scholar 

  • Rumpel C, Amiraslani F, Koutika L-S, Smith P, Whitehead D, Wollenberg E (2018) Put more carbon in soils to meet Paris climate pledges. Nature 564:32–34

    Article  CAS  PubMed  Google Scholar 

  • Schmid M (1982) Endémisme et spéciation en Nouvelle-Calédonie. C R Soc Biogéog 58:52–60

    Google Scholar 

  • Shah F, Nicolas C, Bentzer J, Ellström M, Smits M, Rineau F, Canbäck B, Floudas D, Carleer R, Lackner G, Braesel J, Hoffmeister D, Henrissat B, Ahren D, Johansson T, Hibbett DS, Martin F, Persson P, Tunlid A (2016) Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209:1705–1719. https://doi.org/10.1111/nph.13722

    Article  PubMed  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Champaign

    Google Scholar 

  • Simpson E (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31. https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  • Tedersoo L, Nara K (2010) General latitudinal gradient of biodiversity is reversed in ectomycorrhizal fungi. New Phytol 185:351–354

    Article  PubMed  Google Scholar 

  • Tian X-L, Wang C-B, Bao X-G, Wang P, Li X-F, Yang S-C, Ding G-C, Christie P, Li L (2019) Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil 436:173–192. https://doi.org/10.1007/s11104-018-03924-8

    Article  CAS  Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363

    Article  Google Scholar 

  • Tisdall J, Nelson S, Wilkinson K, Smith S, McKenzie B (2012) Stabilisation of soil against wind erosion by six saprotrophic fungi. Soil Biol Biochem 50:134–141

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. Eur J Soil Sci 33:141–163. https://doi.org/10.1111/j.1365-2389.2011.01408.x

    Article  CAS  Google Scholar 

  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. https://doi.org/10.1111/1365-2745.12054

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x

    Article  Google Scholar 

  • Wang X, Yost RS, Linquist BA (2001) Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth. Soil Sci Soc Am J 65:139–146

    Article  CAS  Google Scholar 

  • White T, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky J, White T (eds) PCR Protocols: A Guide to Methods and Applications. Academic Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the field staff of IAC: A. Bouarat, R. Guiglion, J.P. Lataï and A. Pain for their substantial assistance. We are thankful to our colleagues at IAC: K. Letellier, S. Gigante, V. Gourmelon, J. Soewarto and M. Lelièvre. We are thankful to our colleagues at Cirad, L. Maggia, who supervised with F. Carriconde, V. Gourmelon’s PhD, and E. Gozé who gave statistical advice. We are grateful to our internal reviewer, Mélissande Nagati (UQAT), for helpful advice and comments on a previous version of the manuscript, as well as the anonymous reviewers. Fieldwork and laboratory analyses were funded by INRA, IAC and through a collaboration agreement between IAC and Société Le Nickel (agreement IAC-SLN n°DE2013-041); this funding was granted to F. Carriconde. We thank the French Ministry of Agriculture for funding a PhD bursary (J. Demenois). Luis Merino-Martín was funded with a Marie Curie IEF fellowship (ref. 626666/2013) from the FP7 European program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Demenois.

Additional information

Responsible Editor: Zucong Cai.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Sup. Fig. 1. Best generalized linear model for predicting soil aggregate stability along the successional gradient without (A) or with (B) variables of diversity. Coloured dots correspond to each plot. Plant communities are indicated by different colours: red is sedge-dominated community (S); yellow is shrubland with Tristaniopsis glauca (Mq); orange is Arillastrum forest (Ag); green is Nothofagus forest (Na) and blue is mixed rainforest (M). (PNG 483 kb)

High Resolution Image (TIF 33449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demenois, J., Merino-Martín, L., Fernandez Nuñez, N. et al. Do diversity of plants, soil fungi and bacteria influence aggregate stability on ultramafic Ferralsols? A metagenomic approach in a tropical hotspot of biodiversity. Plant Soil 448, 213–229 (2020). https://doi.org/10.1007/s11104-019-04364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04364-8

Keywords

Navigation