Skip to main content

Advertisement

Log in

Responses of nitrification and denitrification to nitrogen and phosphorus fertilization: does the intrinsic soil fertility matter?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Nitrogen (N) is not only a major regulator of productivity in terrestrial systems but can also be a pollutant. While the effects of fertilizer addition to soil N cycling processes and the associated soil microbial groups have been extensively studied, little attention has been paid to the interaction of fertilizer amendment and the intrinsic fertility of the soil.

Methods

We conducted a filed study on the Chinese Loess Plateau with soils of two fertility levels (low fertility and high fertility), amended with or without synthetic fertilizer (N and phosphorus, NP). Soil samples were collected three times in a continuous winter wheat cropping system and analyzed for soil potential nitrification (PNA) and denitrification (DEA) rates, nitrifiers and denitrifiers.

Results

Populations of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and the resulting PNA were increased by the NP application regardless of intrinsic soil fertility. The NP application increased DEA by 15–228% in the low fertility soil, but decreased DEA by 18–46% in the high fertility soil. Soil denitrifiers also showed divergent responses to NP application in low and high fertility soils, i.e., the abundance of nirS-nitrite reducers increased in the low fertility soil, while nirS- and nirK-nitrite reducers were unchanged in the high fertility soil. The narG-nitrate reducers, AOB and AOA were more responsive to the NP application in the tillering stage (BBCH 25–26) than in other periods, whereas PNA, DEA and denitrifier gene abundance (nirS and nirK) varied more in the flowering stage (BBCH 65).

Conclusions

Our results suggest that the responses of soil nitrification/nitrifiers and denitrification /denitrifiers to NP application varied with intrinsic soil fertility levels. The contrasting responses of nitrification and denitrification to NP application in high fertility soil indicate a decoupling of both processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, Philippot L, Schmid B, Roux XL (2011) Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob Chang Biol 17:1975–1989

    Article  Google Scholar 

  • Barrett M, Khalil MI, Jahangir MM, Lee C, Cardenas LM, Collins G, Richards KG, O’Flaherty V (2016) Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ Sci Pollut Res 23:7899–7910

    Article  CAS  Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41(6):379–388

    Article  CAS  Google Scholar 

  • Billings SA, Tiemann LK (2014) Warming-induced enhancement of soil N2O efflux linked to distinct response times of genes driving N2O production and consumption. Biogeochemistry 119:371–386

    Article  CAS  Google Scholar 

  • Carey CJ, Dove NC, Beman JM, Hart SC, Aronson EL (2016) Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol Biochem 99:158–166

    Article  CAS  Google Scholar 

  • Cheng Y, Wang J, Sun N, Xu M, Zhang J, Cai Z, Wang S (2018) Phosphorus addition enhances gross microbial N cycling in phosphorus-poor soils: a 15N study from two long-term fertilization experiments. Biol Fertil Soils 54(6):783–789

    Article  CAS  Google Scholar 

  • Chon K, Chang JS, Lee E, Lee J, Ryu J, Cho J (2011) Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol Eng 37:64–69

    Article  Google Scholar 

  • Chu H, Fujii T, Morimoto S, Lin X, Yagi K, Hu J, Zhang J (2007) Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol 73:485–491

    Article  CAS  PubMed  Google Scholar 

  • Cui P, Fan F, Yin C, Song A, Huang P, Tang Y, Zhu P, Peng C, Li T, Wakelin SA, Liang Y (2016) Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol Biochem 93:131–141

    Article  CAS  Google Scholar 

  • Dhadli HS, Brar BS, Black TA (2016) N2O emissions in a long-term soil fertility experiment under maize–wheat cropping system in northern India. Geoderma Reg 7(2):102–109

    Article  Google Scholar 

  • Entz MH, Gross KG, Fowler DB (1992) Root growth and soil-water extraction by winter and spring wheat. Can J Plant Sci 72:1109–1120

    Article  Google Scholar 

  • Fisk LM, Barton L, Jones DL, Glanville HC, Murphy DV (2015) Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol Biochem 88:380–389

    Article  CAS  Google Scholar 

  • Fofana B, Mcs W, Bationo A, Breman H, Mando A (2008) Millet nutrient use efficiency as affected by natural soil fertility, mineral fertilizer use and rainfall in the west African Sahel. Nutr Cycl Agroecosyst 81:25–36

    Article  CAS  Google Scholar 

  • Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil n mineralization rates. J Ecol 97:48–56

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Graham DW, Trippett C, Dodds WK, O’Brien JM, Banner EBK, Head IM, Smith MS, Yang RK, Knapp CW (2010) Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environ Pollut 158:3225–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Wu J, Dang T, Liu W, Li Y, Wei W, Keith Syers J (2010) Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China. Plant Soil 330:1–13

    Article  CAS  Google Scholar 

  • Guo S, Wu J, Coleman K, Zhu H, Li Y, Liu W (2012) Soil organic carbon dynamics in a dryland cereal cropping system of the Loess Plateau under long-term nitrogen fertilizer applications. Plant Soil 353:321–332

    Article  CAS  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  PubMed  Google Scholar 

  • Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 5:123–137

    Article  Google Scholar 

  • Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327–335

    Article  CAS  PubMed  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XK, Su F, Ju XT, Gao B, Oenema O, Christie P, Huang B, Jiang RF, Zhang FS (2013) Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes. Environ Pollut 176:198–207

    Article  CAS  PubMed  Google Scholar 

  • Huang MB, Dang TH, Gallichand J, Goulet M (2003a) Effect of increased fertilizer applications to the wheat crop on soil-water depletion in the loess plateau, China. Agric Water Manag 58:267–278

    Article  Google Scholar 

  • Huang MB, Shao MG, Zhang L, Li YS (2003b) Water use efficiency and sustainability of different long-term crop rotation systems in the Loess Plateau of China. Soil Tillage Res 72:95–104

    Article  Google Scholar 

  • Isobe K, Oka H, Watanabe T, Tateno R, Urakawa R, Liang C, Senoo K, Shibata H (2018) High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest. Soil Biol Biochem 124:90–100

    Article  CAS  Google Scholar 

  • Jian S, Li J, Chen J, Wang G, Mayes MA, Dzantor KE, Hui D, Luo Y (2016) Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol Biochem 101:32–43

    Article  CAS  Google Scholar 

  • Joergensen R, Brookes P (1990) Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol Biochem 22:1023–1027

    Article  CAS  Google Scholar 

  • Ju X, Liu X, Zhang F, Roelcke M (2004) Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. AMBIO 33:300–305

    Article  PubMed  Google Scholar 

  • Jung J, Yeom J, Han J, Kim J, Park W (2012) Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils. J Microbiol 50:365–373

    Article  CAS  PubMed  Google Scholar 

  • Kihara J, Nziguheba G, Zingore S, Coulibaly A, Esilaba A, Kabambe V, Njoroge S, Palm C, Huising J (2016) Understanding variability in crop response to fertilizer and amendments in Sub-Saharan Africa. Agric Ecosyst Environ 229:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer SB, Reganold JP, Glover JD, Bohannan BJ, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci U S A 103:4522–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancashire P, Bleiholder H, Langeluddecke P, Stauss R, Asselt T, Weber E, Witzenberger A (1991) An uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119(3):561–601

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou H, Wang J, Liu X, Cheng K, Li L, Zheng J, Zhang X, Zheng J, Pan G (2015) Short-term response of nitrifier communities and potential nitrification activity to elevated CO2 and temperature interaction in a Chinese paddy field. Appl Soil Ecol 96:88–98

    Article  Google Scholar 

  • Liu Q, Wang R, Li R, Hu Y, Guo S (2016) Temperature sensitivity of soil respiration to nitrogen fertilization: varying effects between growing and non-growing seasons. PLoS One 11(12):e0168599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Gutierrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L (2004) Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J Microbiol Methods 57:399–407

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Yang Y, Luo Y, Fang C, Zhou X, Chen J, Yang X, Li B (2011) Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Jiang S, Assemien F, Qin M, Ma B, Xie Z, Liu Y, Feng H, Du G, Ma X, Roux XL (2016) Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biol Biochem 101:195–206

    Article  CAS  Google Scholar 

  • Miao Y, Stewart BA, Zhang F (2011) Long-term experiments for sustainable nutrient management in China. A review. Agron Sustain Dev 31(2):397–414

    Article  Google Scholar 

  • Ouyang Y, Norton JM, Stark JM, Reeve JR, Habteselassie MY (2016) Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol Biochem 96:4–15

    Article  CAS  Google Scholar 

  • Park S, Croteau P, Boering KA, Etheridge DM, Ferretti D, Fraser PJ, Kim KR, Krummel PB, Langenfelds RL, van Ommen TD, Steele LP, Trudinger CM (2012) Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat Geosci 5:261–265

    Article  CAS  Google Scholar 

  • Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402

    Article  CAS  PubMed  Google Scholar 

  • Regan K, Stempfhuber B, Schloter M, Rasche F, Prati D, Philippot L, Boeddinghaus RS, Kandeler E, Marhan S (2016) Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biol Biochem 109:214–226

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang Q, Ling N, Feng X, Yang X, Wu P, Zou J, Shen Q, Guo S (2014) Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: a summary of long-term fertilizer experiments in China. Plant Soil 381:13–23

    Article  CAS  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci U S A 111:9199–9204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Shrewsbury LH, Smith JL, Huggins DR, Carpenter-Boggs L, Reardon CL (2016) Denitrifier abundance has a greater influence on denitrification rates at larger landscape scales but is a lesser driver than environmental variables. Soil Biol Biochem 103:221–231

    Article  CAS  Google Scholar 

  • Siemens J, Haas M, Kaupenjohann M (2003) Dissolved organic matter induced denitrification in subsoils and aquifers? Geoderma 113:253–271

    Article  CAS  Google Scholar 

  • Šimek M, Cooper JE, Picek T, Šantrůčková H (2000) Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice. Soil Biol Biochem 32:101–110

    Article  Google Scholar 

  • Sun R, Guo X, Wang D, Chu H (2015) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl Soil Ecol 95:171–178

    Article  Google Scholar 

  • Sun Q, Wang R, Wang Y, Du L, Zhao M, Gao X, Hu Y, Guo S (2018) Temperature sensitivity of soil respiration to nitrogen and phosphorous fertilization: does soil initial fertility matter? Geoderma 325:172–182

    Article  CAS  Google Scholar 

  • Tang Y, Zhang X, Li D, Wang H, Chen F, Fu X, Fang X, Sun A, Yu G (2016) Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biol Biochem 103:284–293

    Article  CAS  Google Scholar 

  • Taylor AE, Zeglin LH, Wanzek TA, Myrold DD, Bottomley PJ (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J 6:2024–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Wang Q, Fan X, Qin Z, Wang M (2012a) Change trends of temperature and precipitation in the loess plateau region of China, 1961–2010. Glob Planet Chang 92-93:138–147

    Article  Google Scholar 

  • Wang Y, Marschner P, Zhang F (2012b) Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant Soil 354:283–298

    Article  CAS  Google Scholar 

  • Wang X, Tong Y, Gao Y, Gao P, Liu F, Zhao Z, Pang Y (2014) Spatial and temporal variations of crop fertilization and soil fertility in the loess plateau in China from the 1970s to the 2000s. PLoS One 9(11):e112273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ji H, Gao C (2015) Differential responses of soil bacterial taxa to long-term P, N, and organic manure application. J Soils Sediments 16:1046–1058

    Article  CAS  Google Scholar 

  • Wang J, Chadwick DR, Cheng Y, Yan X (2017) Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci Total Environ 616-617:908–917

    Article  CAS  PubMed  Google Scholar 

  • White JR, Reddy KR (1999) Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Sci Soc Am J 63:1945–1954

    Article  CAS  Google Scholar 

  • Xin X, Zhang J, Zhu A, Zhang C (2016) Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res 156:166–172

    Article  Google Scholar 

  • Yin C, Fan F, Song A, Cui P, Li T, Liang Y (2015) Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Appl Microbiol Biotechnol 99:5719–5729

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Wang W (2015) Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of northern China. For Ecol Manag 341:59–66

    Article  Google Scholar 

  • Zhang WJ, Wang XJ, Xu MG, Huang SM, Liu H, Peng C (2010) Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosci Discuss 6:6539–6577

    Article  Google Scholar 

  • Zhang F, Cui Z, Chen X, Ju X, Shen J, Chen Q, Liu X, Zhang W, Mi G, Fan M, Jiang R (2012) Integrated nutrient management for food security and environmental quality in China. Adv Agron 116:1–40

    Article  CAS  Google Scholar 

  • Zhou Z, Zheng Y, Shen J, Zhang L, Liu Y, He J (2012) Responses of activities, abundances and community structures of soil denitrifiers to short-term mercury stress. J Environ Sci 24:369–375

    Article  CAS  Google Scholar 

  • Zhu Q, Riley WJ (2015) Improved modelling of soil nitrogen losses. Nat Clim Chang 5:705–706

    Article  Google Scholar 

  • Zhu X, Li Y, Peng X, Zhang S (1983) Soils of the loess region in China. Geoderma 29:237–255

    Article  CAS  Google Scholar 

  • Zingore S, Murwira HK, Delve RJ, Giller KE (2007) Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agric Ecosyst Environ 119(1):112–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The three anonymous reviewers are greatly acknowledged for their invaluable comments and suggestions on this paper. We also thank Yaxian Hu for her helpful comments and suggestions and Petra Marschner for her improvement of language. This work was supported by the National Key Research and Development Program of China (2016YFD0200308, 2016YFD0800105), National Natural Science Foundation of China (41301322), Natural Science Basic Research Plan in Shaanxi Province of China (2015JQ4111) and Chinese Universities Scientific Fund (2014YB055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Additional information

Responsible Editor: Elizabeth M Baggs.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ji, H., Wang, R. et al. Responses of nitrification and denitrification to nitrogen and phosphorus fertilization: does the intrinsic soil fertility matter?. Plant Soil 440, 443–456 (2019). https://doi.org/10.1007/s11104-019-04108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04108-8

Keywords

Navigation