Skip to main content

Advertisement

Log in

Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Symbiotic fungi commonly increase plant acquisition of soil nutrients. Because prior work has focused on root fungi, we examined how leaf endophytes (Epichloë) influenced plant responses to fertilization and altered plant traits that may cascade to food webs and ecosystem processes.

Methods

We manipulated endophyte presence/absence in two populations of Trisetum spicatum, a wild relative of oat, under a 2 × 2 addition of soil nitrogen (N) and phosphorus (P) in the greenhouse.

Results

Endophyte symbiosis altered how plant biomass responded to soil N and how plant traits responded to soil P. Endophytes boosted the biomass gains from N-fertilization in one population. Plants from a second population had weak benefits of symbiosis, but the endophyte altered plant traits, by increasing specific leaf area under P-fertilization, root diameter under low P, and concentration of the fungal alkaloid AcAP under N fertilization. Endophyte presence suppressed the typically observed increase in root hair density in response to soil P limitation. Under low P, symbiotic plants from both populations had improved forage quality relative to symbiont-free plants, although N-fertilization had a larger effect size on forage quality than did symbiosis. Finally, the two populations differed in production of fungal alkaloids, which generally increased in response to fertilization.

Conclusions

Predicting how microbial symbionts mediate plant acquisition of nutrients requires understanding how much their effects vary among plant and endophyte genotypes. Here, the magnitude and direction of leaf symbionts’ effects on plant yield and traits varied between populations and with soil nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahlholm JU, Helander M, Henriksson J, Metzler M, Saikkonen K (2002a) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573

    Article  PubMed  Google Scholar 

  • Ahlholm JU, Helander M, Lehtimaki S, Wali P, Saikkonen K (2002b) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  • Bacon CW, White JF Jr (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton

    Google Scholar 

  • Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) (2007) Flora of North America volume 24: North of Mexico: Magnoliophyta: Commelinidae (in part): Poaceae, part 1. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico, New York.

  • Bell-Dereske L, Takacs-Vesbach C, Kivlin SN, Emery SM, Rudgers JA (2017) Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiology Ecology 93(6). https://doi.org/10.1093/femsec/fix036

  • Berry D, Takach JE, Schardl CL, Charlton ND, Scott B, Young CA (2015) Disparate independent genetic events disrupt the secondary metabolism gene perA in certain symbiotic Epichloë species. Appl Environ Microbiol 81:2797–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boot RGA, Mensink M (1990) Size and morphology of root systems of perennial grasses from contrasting habitats as affected by nitrogen supply. Plant Soil 129:291–299

    Article  CAS  Google Scholar 

  • Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA (2014) Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 90:276–289. https://doi.org/10.1111/1574-6941.12393

    Article  CAS  PubMed  Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of grass-endophyte symbiosis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Chu-chou M, Guo G, An ZQ, Hendrix JW, Ferris RS, Siegel MR, Dougherty CT, Burrus PB (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2009) Primer version 6.1.10 user manual and tutorial. Primer-E, Plymouth

    Google Scholar 

  • Craven KD, Blankenship JD, Leuchtmann A, Hignight K, Schardl CL (2001) Hybrid fungal endophytes symbiotic with the grass Lolium pratense. Sydowia 53:44–73

    Google Scholar 

  • Ding N, Kupper JV, DH MN Jr (2015) Phosphate source interacts with endophyte strain to influence biomass and root system architecture in tall fescue. Agron J 107:662–670. https://doi.org/10.2134/agronj14.0135

    Article  CAS  Google Scholar 

  • Faulkner JR, Hussaini SR, Blankenship JD, Pal S, Branan BM, Grossman RB, Schardl CL (2006) On the sequence of bond formation in loline alkaloid biosynthesis. Chembiochem 7:1078–1088

    Article  CAS  PubMed  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 191:181–188

    Article  CAS  Google Scholar 

  • Garcia-Parisi PA, Lattanzi FA, Grimoldi AA, Druille M, Omacini M (2017) Three symbionts involved in interspecific plant-soil feedback: epichloid endophytes and mycorrhizal fungi affect the performance of rhizobia-legume symbiosis. Plant Soil 412:151–162. https://doi.org/10.1007/s11104-016-3054-3

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 45:293–296. https://doi.org/10.1038/nature06592

    Article  CAS  Google Scholar 

  • Guo J, McCulley RL, DH MN Jr (2015) Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front Plant Sci 6:183. https://doi.org/10.3389/fpls.2015.00183

    Article  PubMed  PubMed Central  Google Scholar 

  • Kering MK, Butler TJ, Biermacher JT, Mosali J, Guretzky JA (2013) Effect of potassium and nitrogen fertilizer on switchgrass productivity and nutrient removal rates under two harvest systems on a low potassium soil. Bioenergy Res 6:329–335

    Article  CAS  Google Scholar 

  • Krauss J, Harri SA, Bush L, Husi R, Bigler L, Power SA, Muller CB (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116

    Article  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Lewis GC (2004) Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Ann Appl Biol 144:53–63. https://doi.org/10.1111/j.1744-7348.2004.tb00316.x

    Article  Google Scholar 

  • Li X, Ren A, Han R, Yin L, Wei M, Gao Y (2012) Endophyte-mediated effects on the growth and physiology of Achnatherum sibiricum are conditional on both N and P availability. PLoS One 7:e48010. https://doi.org/10.1371/journal.pone.0048010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467. https://doi.org/10.1046/j.1365-3040.2001.00695.x

    Article  CAS  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320. https://doi.org/10.1111/j.2007.0030-1299.15973.x

    Article  Google Scholar 

  • Malinowski DP, Belesky DP (1999) Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J Plant Nutr 22:835–853

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP, Hill NS, Baligar VC, Fedders JM (1998) Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb.). Plant Soil 198:53–61

    Article  CAS  Google Scholar 

  • Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60

  • Newman JA, Abner ML, Dado RG, Gibson DJ, Brookings A, Parsons AJ (2003) Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Glob Chang Biol 9:425–437

    Article  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Omacini M, Semmartin M, Perez LI, Gundel PE (2012) Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279. https://doi.org/10.1016/j.apsoil.2011.10.012

    Article  Google Scholar 

  • Pan J, Bhardwaj M, Faulkner JR, Nagabhyru P, Charlton ND, Higashi RM, Miller AF, Young CA, Grossman RB, Schardl CL (2014) Ether bridge formation in loline alkaloid biosynthesis. Phytochemistry 98:60–68

    Article  CAS  PubMed  Google Scholar 

  • Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. https://doi.org/10.1071/bt12225

    Article  Google Scholar 

  • Pittman JJ, Arnall DB, Interrante SM, Wang N, Raun WR, Butler TJ (2016) Bermudagrass, wheat, and tall fescue crude protein forage estimation using mobile-platform active-spectral and canopy-height data. Crop Sci 56:870–881. https://doi.org/10.2135/cropsci2015.05.0274

    Article  CAS  Google Scholar 

  • Ranelli LB, Hendricks WQ, Lynn JS, Kivlin SN, Rudgers JA (2015) Biotic and abiotic predictors of fungal colonization in grasses of the Colorado Rockies. Divers Distrib 21:962–976. https://doi.org/10.1111/ddi.12310

    Article  Google Scholar 

  • Rasmussen S, Lane GA, Mace W, Parsons AJ, Fraser K, Xue H (2011) The use of genomics and metabolomics methods to quantify fungal endosymbionts and alkaloids in grasses. In: Hardy N, Hall R (eds) Plant Metabolomics. Methods in Molecular Biology. Methods and Protocols, vol 860. Humana Press.

  • Ren AZ, Gao YB, Zhou F (2007) Response of Neotyphodium lolii-infected perennial ryegrass to phosphorus deficiency. Plant Soil Environ 53:113–119

    Article  CAS  Google Scholar 

  • Ren AZ, Gao YB, Wang W, Wang JL, Zhao NX (2009) Influence of nitrogen fertilizer and endophyte infection on ecophysiological parameters and mineral element content of perennial ryegrass. J Integr Plant Biol 51:75–83. https://doi.org/10.1111/j.1744-7909.2008.00721.x

    Article  CAS  PubMed  Google Scholar 

  • Ren AZ, Li X, Han R, Yin LJ, Wei MY, Gao YB (2011) Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant Soil 346:363–373. https://doi.org/10.1007/s11104-011-0824-9

    Article  CAS  Google Scholar 

  • Ren A, Wei M, Yin L, Wu L, Zhou Y, Li X, Gao Y (2014) Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ Exp Bot 108:71–78. https://doi.org/10.1016/j.envexpbot.2013.11.019

    Article  CAS  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143. https://doi.org/10.1071/cp07125

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  • Rogers JK, Young CA, Mosali J, Norton SL, Hopkins AA (2014) Stockpiled forage yield and nutritive value of summer-dormant and summer-active tall fescue in a marginal environment. Forage and Grazinglands 12:1–9. https://doi.org/10.2134/FG-2014-0065-RS

  • Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, An S, Yao Z, Young CA, Panaccione DG, Lee ST, Schardl CL, Li C (2018) Toxin-producing Epichloë bromicola strains symbiotic with the forage grass, Elymus dahuricus, in China. Mycologia 109:847–859

    Article  Google Scholar 

  • Shymanovich T, Charlton ND, Musso AM, Scheerer J, Cech NB, Faeth SH, Young CA (2017) Interspecific and intraspecific hybrid Epichloë species symbiotic with the north American native grass Poa alsodes. Mycologia 109:1–16. https://doi.org/10.1080/00275514.2017.1340779

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd Edition. Academic Press, p 800.

  • Song M, Chai Q, Li X, Yao X, Li C, Christensen MJ, Nan Z (2015) An asexual Epichloe endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165. https://doi.org/10.1007/s11104-014-2289-0

    Article  CAS  Google Scholar 

  • Takach JE, Young CA (2014) Alkaloid genotype diversity of tall fescue endophytes. Crop Sci 54:667–678. https://doi.org/10.2135/cropsci2013.06.0423

    Article  CAS  Google Scholar 

  • van de Wiel CCM, van der Linden CG, Scholten OE (2016) Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207:1–22. https://doi.org/10.1007/s10681-015-1572-3.

    Article  Google Scholar 

  • Vazquez-de-Aldana BR, Garcia-Ciudad A, Garcia-Criado B, Vicente-Tavera S, Zabalgogeazcoa I (2013) Fungal endophyte (Epichloe festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One 8:e84539. https://doi.org/10.1371/journal.pone.0084539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Terri Tobias and Andrea Porras-Alfaro for providing seeds from Niwot Ridge, CO. Thanks to Josh Lynn for assistance with SLA measurements. Thanks to Bonnie Watson and David Huhman (Analytical Chemistry Core Facility) at the Noble Research Institute for evaluating the chanoclavine and peramine, and Christopher Schardl at University of Kentucky for advice on analysis of foliar aminopyrrolizidines. Comments from two anonymous reviewers and Section Editor Thomas W. Kuyper improved the manuscript. This work was funded by NSF DEB#1354972 and support from the Rocky Mountain Biological Laboratory to J.R. and supported the undergraduate thesis work of H.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Rudgers.

Additional information

Responsible Editor: Thom W. Kuyper.

Electronic supplementary material

ESM 1

(DOCX 6368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckley, H., Young, C.A., Charlton, N.D. et al. Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum). Plant Soil 434, 425–440 (2019). https://doi.org/10.1007/s11104-018-3848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3848-6

Keywords

Navigation