Skip to main content
Log in

Biogeochemical nature of grassland soil organic matter under plant communities with two nitrogen sources

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Legumes are used in forage agriculture to replace mineral N fertilizer by biological N fixation. We hypothesised that N addition through biological N fixation may have different effects on soil organic matter (SOM)112 quantity and composition compared to mineral N fertilization. In this study we introduced lucerne into grasslands and aimed to examine the resulting effects on C stocks and the molecular C signatures of roots and soil.

Methods

Lucerne, cocksfoot and tall fescue were grown for five years as monocultures or mixtures. Grass monocultures were N-fertilised (SNF), while lucerne monoculture and mixtures received N through biological N2 fixation (BNF). For root and soil samples from 30 cm depth, we analysed quantity and composition of (1) non-cellulosic neutral carbohydrates after acid hydrolysis and (2) lignin after CuO oxidation.

Results

Our data showed species-specific chemical signatures for roots extracted from soil. Lucerne presence increased the N content of roots and lowered their lignin/N ratio. Contrasting root input over four growing seasons did not impact SOM stocks, as they were similar in all treatments. We observed different chemical signatures for soil under mixtures as compared to lucerne monoculture. In particular, the state of SOM degradation was enhanced under mixtures.

Conclusion

A greater input of higher quality litter to soils receiving BNF did not increase SOM storage. When lucerne was grown in mixture with grass, we observed lignin and carbohydrate signatures that indicated a more advanced state of degradation as compared to monocultures. Therefore, we suggest that the introduction of lucerne into grassland influences OM degradation more than its stabilization. After four growing seasons, SOM molecular signatures were not significantly influenced by type of N fertilization and showed little difference among the treatments despite species specific root composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SOM:

Soil organic matter

SNF:

Synthetic nitrogen fertilizer

BNF:

Biological nitrogen fixation

M:

Lucerne (Medico sativa)

D:

Cocksfoot (Dactylis glomerata)

F:

Tall fescue (Festuca arundinacea)

FM:

Fescue lucerne mixture

DM:

Cocksfoot lucerne mixture

PCA:

Principal Component Analyses

(Ac/Al)V :

Vanillyl acid/vanillyl aldehyde ratio

(Ac/Al)S :

Syringyl acid/syringyl aldehyde ratio

Co/V:

Coumaryl/vanillyl ratio

S/V:

Syringyl/vanillyl ratio

C6/C5:

(galactose + mannose)/(arabinose + xylose) ratio

desoxyC6/C5:

(rhamnose + fucose)/(arabinose + xylose) ratio

References

  • Angers DA, Mehuys GR (1989) Effects of cropping on carbohydrate content and water-stable aggregation of a clay soil. Can J Soil Sci 69:373–380. doi:10.4141/cjss89-037

    Article  Google Scholar 

  • Bahri H, Dignac M-F, Rumpel C et al (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988. doi:10.1016/j.soilbio.2006.01.003

    Article  CAS  Google Scholar 

  • Bruulsema TW, Christie BR (1987) Nitrogen contribution to succeeding corn from alfalfa and red clover. Agron J 79:96–100

    Article  Google Scholar 

  • C Rumpel, A Crème, P.T Ngo, G Velásquez, M.L Mora, A Chabbi, C Rumpel, A Crème, P.T Ngo, G Velásquez, M.L Mora, A Chabbi (2015) The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. Journal of soil science and plant nutrition 15 (2), pp. 353-371

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Chabbi A, Kögel-Knabner I, Rumpel C (2009) Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol Biochem 41:256–261. doi:10.1016/j.soilbio.2008.10.033

    Article  CAS  Google Scholar 

  • Chen H, Mommer L, van Ruijven J, de Kroon H, Fischer C, Gessler A, Hildebrandt A, Scherer-Lorenzen M, Wirth C, Weigelt A (2016) Plant species richness negatively affects root decomposition in grasslands. J Ecol (in press)

  • Cotrufo MF, Wallenstein MD, Boot CM et al (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. doi:10.1111/gcb.12113

    Article  PubMed  Google Scholar 

  • Crème A, Rumpel C, Gastal F et al (2016) Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant Soil 402, 117-128

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297. doi:10.1016/j.agee.2003.09.018

    Article  Google Scholar 

  • Dennis PG, Miller AJ et al (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? Fems Microbio. Ecol 72:313–327

    CAS  Google Scholar 

  • Dungait JA, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Eder E, Spielvogel S, Kölbl A et al (2010) Analysis of hydrolysable neutral sugars in mineral soils: improvement of alditol acetylation for gas chromatographic separation and measurement. Org Geochem 41:580–585. doi:10.1016/j.orggeochem.2010.02.009

    Article  CAS  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322. doi:10.1111/j.1365-2745.2007.01345.x

    Article  CAS  Google Scholar 

  • Frei M (2013) Lignin: characterization of a multifaceted crop component. Sci World J 2013:1–25. doi:10.1155/2013/436517

    Article  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66. doi:10.1051/agro/2009003

    Article  CAS  Google Scholar 

  • Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877. doi:10.1104/pp.017004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi:10.1007/s11104-008-9668-3

    Article  CAS  Google Scholar 

  • IPCC (2013) Fifth Assessment Report - WG1

  • John I. Hedges, John R. Ertel, John I. Hedges, John R. Ertel (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry 54 (2):174-178

  • Kallenbach C, Grandy AS, Frey SD, Diefendorf AF (2015) Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem 91:279–290

    Article  CAS  Google Scholar 

  • Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118. doi:10.1016/S0038-0717(02)00242-0

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ et al (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409. doi:10.1016/j.soilbio.2013.09.032

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85 (1), 9-24

  • Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18:589–594. doi:10.1016/0038-0717(86)90080-5

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Krämer M, Weisbjerg MR, Lund P et al (2012) Estimation of indigestible NDF in forages and concentrates from cell wall composition. Anim Feed Sci Technol 177:40–51. doi:10.1016/j.anifeedsci.2012.07.027

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G et al (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621. doi:10.2307/1936780

    Article  CAS  Google Scholar 

  • Milcu A, Partsch S, Scherber C et al (2008) Earthworms and legumes control litter decomposition in a plant diversity gradient. Ecology 89:1872–1882. doi:10.1890/07-1377.1

    Article  PubMed  Google Scholar 

  • Moni C, Rumpel C, Virto I et al (2010) Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. Eur J Soil Sci 61:958–969. doi:10.1111/j.1365-2389.2010.01307.x

    Article  CAS  Google Scholar 

  • Mortenson MC, Schuman GE, Ingram LJ (2004) Carbon sequestration in rangelands Interseeded with yellow-flowering alfalfa (Medicago sativa ssp. falcata). Environ Manag 33:S475–S481. doi:10.1007/s00267-003-9155-9

    Article  Google Scholar 

  • Murayama S (1984) Changes in the monosaccharide composition during the decomposition of straws under field conditions. Soil Sci Plant Nutr 30:367–381. doi:10.1080/00380768.1984.10434702

    Article  CAS  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. doi:10.1007/BF02205590

    Article  CAS  Google Scholar 

  • P. Puget, L.E. Drinkwater, P. Puget, L.E. Drinkwater (2001) Short-Term Dynamics of Root- and Shoot-Derived Carbon from a Leguminous Green Manure. Soil Science Society of America Journal 65 (3):771

  • P. Smith, M. F. Cotrufo, C. Rumpel, K. Paustian, P. J. Kuikman, J. A. Elliott, R. McDowell, R. I. Griffiths, S. Asakawa, M. Bustamante, J. I. House, J. Sobocká, R. Harper, G. Pan, P. C. West, J. S. Gerber, J. M. Clark, T. Adhya, R. J. Scholes, M. C. Scholes (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1 (2):665-685

  • Paustian K, Andren O, Clarholm M et al (1990) Carbon and nitrogen budgets of four agro-ecosystems with annual and perennial crops, with and without N fertilization. J Appl Ecol 27:60. doi:10.2307/2403568

    Article  Google Scholar 

  • Pellerin BA, Hernes PJ, Saraceno J et al (2010) Microbial degradation of plant leachate alters lignin phenols and Trihalomethane precursors. J Environ Qual 39:946. doi:10.2134/jeq2009.0487

    Article  CAS  PubMed  Google Scholar 

  • Pérès G, Cluzeau D, Menasseri S et al (2013) Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant Soil 373:285–299. doi:10.1007/s11104-013-1791-0

    Article  Google Scholar 

  • Pete Smith, Joanna I. House, Mercedes Bustamante, Jaroslava Sobocká, Richard Harper, Genxing Pan, Paul C. West, Joanna M. Clark, Tapan Adhya, Cornelia Rumpel, Keith Paustian, Peter Kuikman, M. Francesca Cotrufo, Jane A. Elliott, Richard McDowell, Robert I. Griffiths, Susumu Asakawa, Alberte Bondeau, Atul K. Jain, Jeroen Meersmans, Thomas A. M. Pugh (2016) Global change pressures on soils from land use and management. Global Change Biology 22 (3):1008-1028

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Rumpel C, Dignac M-F (2006) Gas chromatographic analysis of monosaccharides in a forest soil profile: analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction–acetylation. Soil Biol Biochem 38:1478–1481. doi:10.1016/j.soilbio.2005.09.017

    Article  CAS  Google Scholar 

  • Saar S, Semchenko M, Barel JM, De Deyn GB (2016) Legume presence reduces the decomposition rate of non-legume roots. Soil Biol Biochem 94:88–93

    Article  CAS  Google Scholar 

  • Sanaullah M, Chabbi A, Lemaire G et al (2010) How does plant leaf senescence of grassland species influence decomposition kinetics and litter compounds dynamics? Nutr Cycl Agroecosyst 88:159–171

    Article  Google Scholar 

  • Schipanski ME, Drinkwater LE (2012) Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant Soil:1–13

  • Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Thevenot M, Dignac M-F, Rumpel C (2010) Fate of lignins in soils: a review. Soil Biol Biochem 42:1200–1211. doi:10.1016/j.soilbio.2010.03.017

    Article  CAS  Google Scholar 

  • Thomas RJ, Asakawa NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 25:1351–1361. doi:10.1016/0038-0717(93)90050-L

    Article  CAS  Google Scholar 

  • Vahdat E, Nourbakhsh F, Basiri M (2011) Lignin content of range plant residues controls N mineralization in soil. Eur J Soil Biol 47:243–246. doi:10.1016/j.ejsobi.2011.05.001

    Article  CAS  Google Scholar 

  • Van Soest PJ (1964) Symposium on nutrition and forage and pastures: new chemical procedures for evaluating forages. J Anim Sci 23:838–845

    Article  Google Scholar 

  • Wolf DC, Wagner GH (2005) Carbon transformations and soil organic matter formation. Princ Appl Soil Microbiol 2nd Edn Prentice Hall Up Saddle River 285–332

Download references

Acknowledgements

The lead author, Alexandra Crème, is grateful to the European community, who funded a PhD grant under the Seventh Framework programme (FP2012-2015), grant agreement no. 262060 (ExpeER), together with the Regional Council for Poitou-Charentes. Moreover, we acknowledge funding from CNRS-INSU and ADEME within the framework of the AEGES project. We thank the National Research Infrastructure “Agro- écosystèmes, Cycles Biogéochimique et Biodiversité” (SOERE-ACBB http://www.soere-acbb.com/fr/) for providing support during the sampling campaign. Finally, Valérie Pouteau, Daniel Billiou and Jean-Pierre Terrasson are acknowledged for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abad Chabbi.

Ethics declarations

Conflict of interest

We declare that we do not have any conflict of interest.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creme, A., Chabbi, A., Gastal, F. et al. Biogeochemical nature of grassland soil organic matter under plant communities with two nitrogen sources. Plant Soil 415, 189–201 (2017). https://doi.org/10.1007/s11104-016-3158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3158-9

Keywords

Navigation