Skip to main content
Log in

Changes in very fine root respiration and morphology with time since last fire in a boreal forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession.

Methods

We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5–1.0, and 1.0–2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire.

Results

Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74 %, 38 %, and 31 % higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands.

Conclusion

Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams TS, McCormack ML, Eissenstat DM (2013) Foraging strategies in trees of different root morphology: the role of root lifespan. Tree Physiol 33:940–948

    Article  CAS  PubMed  Google Scholar 

  • Amiro BD, Barr AG, Barr JG, Black TA, Bracho R, Brown M, Chen JM, Clark KL, Davis KJ, Deasi AR, Dore S, Engel V, Fuentes JD, Goldstein AH, Goulden ML, Kolb TE, Lavigne MB, Law BE, Margolis HA, Martin T, McCaughey JH, Mission L, Montes-Helu M, Noormets A, Randerson JT, Starr G, Xiao J (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res 115: G00K02.

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FD (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST (2004a) Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiol 24:1387–1395

    Article  PubMed  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004b) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Chang Biol 10:1756–1766

    Article  Google Scholar 

  • Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450:89–92

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw CJA, Warkentin IG (2015) Global estimates of boreal forest carbon stocks and flux. Glob Planet Chang 128:24–30

    Article  Google Scholar 

  • Burke RA, Zepp RG, Tarr MA, Miller WL, Stocks BJ (1997) Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites. J Geophys Res 102:29289–29300

    Article  CAS  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Czimczik CI, Trumbore SE, Carbone MS, Winston GC (2006) Changing sources of soil respiration with time since fire in a boreal forest. Glob Chang Biol 12:957–971

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Dooley SR, Treseder KK (2012) The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109:49–61

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken

    Book  Google Scholar 

  • FAO (1990) Soil map of the world, revised legend. World Soil Resources Report No. 60. FAO, Rome, Italy.

  • Falster DS, Warton DI, Wright IJ (2006) SMATR: Standardised Major axis Tests and Routines, ver 2.0. http://www.bio.mq.edu.au/ecology/SMATR/.

  • George K, Norby RJ, Hamiltion JG (2003) Fine root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytol 160:511–522

    Article  Google Scholar 

  • Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6:957–974

    Article  CAS  Google Scholar 

  • Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12:891–899

    Article  Google Scholar 

  • Goulden ML, Mcmillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Chang Biol 17:855–871

    Article  Google Scholar 

  • Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Harden JW, Mack M, Veldhuis H, Gower ST (2003) Fire dynamics and implications for nitrogen cycles in boreal forests. J Geophys Res 108:D3,8223

    Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogenous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:549–554

    Article  Google Scholar 

  • Holden S, Gutierrez A, Treseder K (2013) Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16:34–46

    Article  CAS  Google Scholar 

  • Hopkins H, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke JA (2013) Ecosystem-level controls on root-rhizosphere respiration. New Phytol 199:339–351

    Article  CAS  PubMed  Google Scholar 

  • Hummel I, Vile D, Violle C, Devaux J, Ricci B, Blanchard A, Garnier E, Roumet C (2007) Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol 173:313–321

    Article  PubMed  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  CAS  Google Scholar 

  • Jia SX, McLaughlin NB, Gu JC, Li XP, Wang ZQ (2013) Relationships between root respiration rate and root morphology, chemistry and anatomy in larix gmelinii and fraxinus mandshurica. Tree Physiol 33:579–589

    Article  CAS  PubMed  Google Scholar 

  • Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:419–431

    Article  PubMed  Google Scholar 

  • Johnstone JF, Chapin III FS (2006) Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems 9:268–277

    Article  Google Scholar 

  • Kalliokoski T, Pennanen T, Nygren P, Sievänen R, Helmisaari HS (2010) Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant Soil 330:73–89

    Article  CAS  Google Scholar 

  • Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG (2006) Carbon storage on landscapes with stand-replacing fires. Bioscience 56:598–606

    Article  Google Scholar 

  • Köster K, Berninger F, Lindén A, Köster E, Pumpanen J (2014) Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236:74–82

    Article  Google Scholar 

  • Kuptz D, Fleischmann F, Matyssek R, Grams TEE (2011) Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol 191:160–172

    Article  PubMed  Google Scholar 

  • Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24:701–705

    Article  Google Scholar 

  • Litton CM, Ryan MG, Knight DH (2004) Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol Appl 14:460–475

    Article  Google Scholar 

  • Lynch DJ, Matamala R, Iverson CM, Norby RJ, Gonzalez-Meler MA (2013) Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots. New Phytol 199:420–430

    Article  CAS  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari H-S, Hobbie EA, Iversen CM, Jackson RB, Leppa¨lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes. New Phytol

    Google Scholar 

  • Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009) Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol 29:579–585

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finér L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104

    Article  Google Scholar 

  • Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, Abdul Rahim N (2012a) Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree Physiol 32:303–312

    Article  PubMed  Google Scholar 

  • Makita N, Hirano Y, Yamanaka T, Yoshimura K, Kosugi Y (2012b) Ectomycorrhizal fungal colonization induces physio-morphological changes in Quercus serrata leaves and roots. J Plant Nutr Soil Sci 175:900–906

  • Makita N, Yaku R, Ohashi M, Fukuda K, Ikeno H, Hirano Y (2013) Effect of excising and washing treatments on the root respiration rates of Japanese cedar (Cryptomeria japonica) seedlings. J For Res 18:379–383

  • Mäkelä A, Valentine HT, Helmisaari HS (2008) Optimal co-allocation of carbon and nitrogen in a closed forest stand at steady state. New Phytol 180:114–123

    Article  PubMed  Google Scholar 

  • Mataix-Solera J, Cerdà A, Arcenegui V, Jordán A, Zavala LM (2011) Fire effects on soil aggregation: a review. Earth Sci Rev 109:40–60

    Article  Google Scholar 

  • Millar RB, Anderson MJ (2004) Remedies for pseudoreplication. Fish Res 70:397–407

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71

    Article  Google Scholar 

  • O’Donnell JA, Turetsky MR, Harden JW, Manies KL, Pruett LE, Shetler G, Neff JC (2009) Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska. Ecosystems 12:57–72

    Article  Google Scholar 

  • O’Neill KP, Kasischke ES, Richter DD (2002) Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska. Can J For Res 32:1525–1541

    Article  Google Scholar 

  • O’Neill KP, Kasischke ES, Richter DD (2003) Seasonal and decadal patterns of soil carbon uptake and emission along an age sequence of burned black-spruce stands in interior Alaska. J Geophys Res 108:1101–1115

    Article  Google Scholar 

  • Ostonen I, Helmisaari H, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos A, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob Chang Biol 17:3620–3632

    Article  Google Scholar 

  • Ostonen I, Lõhmus K, Helmisaari H, Truu J, Meel S (2007) Fine root morphological adaptations in scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27:1627–1634

    Article  PubMed  Google Scholar 

  • Paula S, Pausas JG (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321–331

    Article  PubMed  Google Scholar 

  • Pohjonen V, Mönkkönen P, Hari P (2008) Test of northern timber line. In: Kulmala L (ed) Hari, P. Springer, Boreal Forest and Climate Change, pp. 472–475

    Google Scholar 

  • Poorter L, McDonald I, Alarcon A, Fichtler E, Licona JC, Pena-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492

    Article  PubMed  Google Scholar 

  • Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529

    Article  Google Scholar 

  • Development Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rewald B, Rechenmacher A, Godbold DL (2014) It’s complicated – intra-root system variability of respiration and morphological traits in four deciduous tree species. Plant Physiol 166:736–745

    Article  PubMed  PubMed Central  Google Scholar 

  • Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  PubMed  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Seedre M, Shrestha B, Chen HH, Colombo S, Jõgiste K (2011) Carbon dynamics of north American boreal forest after stand replacing wildfire and clearcut logging. J For Res 16:168–183

    Article  CAS  Google Scholar 

  • Singh S, Amiro BD, Quideau SA (2008) Effects of forest floor organic layer and root biomass on soil respiration following boreal forest fire. Can J For Res 38:647–655

    Article  Google Scholar 

  • Smithwick EAH, Eissensat DM, Lovett GM, Bowden RD, Rustad LE, Driscoll CT (2013) Root stress and nitrogen deposition: consequences and research priorities. New Phytol 197:1697–1708

    Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645

    Article  PubMed  Google Scholar 

  • Susiluoto S, Rasilo T, Pumpanen J, Berninger F (2008) Effects of grazing on the vegetation structure and carbon dioxide exchange of a fennoscandian fell ecosystem. Arct Antarct Alp Res 40:422–431

    Article  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:493–508

    Article  CAS  PubMed  Google Scholar 

  • Toivanen T, Kotiaho J (2007) Mimicking natural disturbances of boreal forests: the effects of controlled burning and creating dead wood on beetle diversity. Biodivers Conserv 16:3193–3211

    Article  Google Scholar 

  • Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in alaskan boreal forests. Ecol Appl 14:1826–1838

    Article  Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008) Root anatomy, morphology, and longevity among root orders in vaccinium corymbosum (ericaceae). Am J Bot 95:1506–1514

    Article  PubMed  Google Scholar 

  • Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471

    Article  Google Scholar 

  • Walker RL, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  • Wang C, Bond-Lamberty B, Gower ST (2003) Soil surface CO2 flux in a boreal black spruce fire chronosequence. J Geophys Res 108(D3):8224

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Westerling AL, Hidalgo HG, Craven DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313:940–943

    Article  CAS  PubMed  Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monog 76:381–397

    Article  Google Scholar 

  • Yuan ZH, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221

    Article  CAS  Google Scholar 

  • Yuan ZY, Chen HYH (2012) Fine root dynamics with stand development in the boreal forest. Funct Ecol 26:991–998

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2013) Effects of disturbance on fine root dynamics in the boreal forests of northern Ontario, Canada. Ecosystems 16:467–477

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. Jaana Bäck, Prof. Heljä-Sisko Helmisaari of Helsinki University, and staffs of the Värriö research station for supports in field and laboratory experiments. The authors also thank three anonymous reviewers for helpful comments on the manuscript. This study was funded by grants from the Academy of Finland to J.P. (130984, 255576 and 286685), by the Academy of Finland Finnish Centre of Excellence Program (1118615), and by Grant-in Aid for Japan Society for the Promotion of Science fellows (PD 13 J09602) to N.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Makita.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makita, N., Pumpanen, J., Köster, K. et al. Changes in very fine root respiration and morphology with time since last fire in a boreal forest. Plant Soil 402, 303–316 (2016). https://doi.org/10.1007/s11104-016-2801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2801-9

Keywords

Navigation