Skip to main content
Log in

Volatiles from biofumigant plants have a direct effect on carpogenic germination of sclerotia and mycelial growth of Sclerotinia sclerotiorum

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Sclerotia of Sclerotinia sclerotiorum survive in soil and germinate to produce apothecia which release airborne ascospores. Current control methods rely predominantly on the use of fungicides to kill ascospores. The aim of this research was to identify potential biofumigation treatments which suppress sclerotial germination, providing a potential alternative and long-term approach to disease management.

Methods

Microcosm and in vitro experiments were conducted using dried and milled plant material from six different biofumigant crop plants to determine effects on carpogenic germination of sclerotia and mycelial growth of S. sclerotiorum.

Results

All biofumigant plants significantly reduced germination of S. sclerotiorum sclerotia in the microcosm experiments, but were less effective against larger sclerotia. In vitro experiments showed a direct effect of biofumigant volatiles on both the mycelial growth of S. sclerotiorum, and carpogenic germination of sclerotia, where the most effective treatment was B. juncea ‘Vittasso’.

Conclusions

It was clear from this study that biofumigant crop plants have potential as part of an integrated disease management system for control of S. sclerotiorum. The microcosm experiments described here provide a straightforward and reliable screening method for evaluating different biofumigants for activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akram A, Iqbal SM, Ahmed N, Iqbal U, Ghafoor A (2008) Morphological variability and mycelial compatibility among the isolates of Sclerotinia sclerotiorum associated with stem rot of chickpea. Pak J Bot 40:2663–2668

    Google Scholar 

  • Antonious GF, Bomford M, Vincelli P (2009) Screening Brassica species for glucosinolate content. J Environ Sci Health 44:311–316

  • Bangarwa SK, Norsworthy JK, Mattice JD, Gbur EE (2011) Glucosinolate and isothiocyanate production from Brassicaceae cover crops in a plasticulture production system. Weed Sci 59:247–254

    Article  CAS  Google Scholar 

  • Banks JG, Board RG, Sparks NHC (1986) Natural antimicrobial systems and their potential in food preservation of the future. Biotechnol Appl Biochem 8:103–107

    CAS  PubMed  Google Scholar 

  • Bardin SD, Huang HC (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23:88–98. doi:10.1080/07060660109506914

    Article  Google Scholar 

  • Bending GD, Lincoln SD (1999) Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biol Biochem 31:695–703. doi:10.1016/s0038-0717(98)00163-1

    Article  CAS  Google Scholar 

  • Bensen TA, Smith RF, Subbarao KV, Koike ST, Fennimore SA, Shem-Tov S (2009) Mustard and other cover crop effects vary on lettuce drop caused by Sclerotinia minor and on weeds. Plant Dis 93:1019–1027. doi:10.1094/PDIS-93-10-1019

    Article  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol-Rev Can Phytopathol 16:93–108

    Article  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16. doi:10.1111/j.1364-3703.2005.00316.x

    Article  CAS  PubMed  Google Scholar 

  • Bomford M (2009) Biofumigation for soil health in organic high tunnel and conventional field vegetable production systems. Sustain Agric Res Educ. http://mysare.sare.org/mySARE/ProjectReport.aspx?do=viewRept&pn=LS06-185&y=2009&t=1. Accessed 30 Apr 2012

  • Chew FS (1987) Biologically active natural products - potential use in agriculture. In: MJ Comstock (ed) ACS Symposium Series. American Chemical Society, USA

  • Clarkson JP, Staveley J, Phelps K, Young CS, Whipps JM (2003) Ascospore release and survival in Sclerotinia sclerotiorum. Mycol Res 107:213–222. doi:10.1017/s0953756203007159

    Article  PubMed  Google Scholar 

  • Clarkson JP, Phelps K, Whipps JA, Young CS, Smith JA, Watling M (2007) Forecasting sclerotinia disease on lettuce: a predictive model for carpogenic germination of Sclerotinia sclerotiorum sclerotia. Phytopathology 97:621–631

  • Clarkson JP, Carter HE, Coventry E (2010) First report of Sclerotinia subarctica nom. prov. (Sclerotinia species 1) in the UK on Ranunculus acris. Plant Pathol 59:1173–1173. doi:10.1111/j.1365-3059.2010.02271.x

    Article  Google Scholar 

  • Ćosić J, Jurković D, Vrandečić K, Kaučić D (2012) Survival of buried Sclerotinia sclerotiorum sclerotia in undisturbed soil. Helia 35:73–78

    Article  Google Scholar 

  • Dandurand L-M, Mosher RD, Knudsen GR (2000) Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can J Microbiol 46:1051–1057. doi:10.1139/w00-087

    Article  CAS  PubMed  Google Scholar 

  • Dillard H, Ludwig J, Hunter J (1995) Conditioning sclerotia of Sclerotinia sclerotiorum for carpogenic germination. Plant Dis 79:411–415

    Article  Google Scholar 

  • Duncan RW, Dilantha Fernando WG, Rashid KY (2006) Time and burial depth influencing the viability and bacterial colonization of sclerotia of Sclerotinia sclerotiorum. Soil Biol Biochem 38:275–284. doi:10.1016/j.soilbio.2005.05.003

    Article  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51. doi:10.1016/S0031-9422(00)00316-2

    Article  CAS  PubMed  Google Scholar 

  • Fan CM, Xiong GR, Qi P, Ji GH, He YQ (2008) Potential biofumigation effects of Brassica oleracea var. caulorapa on growth of fungi. J Phytopathol 156:321–325. doi:10.1111/j.1439-0434.2007.01343.x

    Article  Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit Analysis. Wiley Subscription Services, Inc., A Wiley Company, New York

  • Geier B (2009) On-farm study results: biofumigation and soil solarization. Kentucky State University, Kentucky

    Google Scholar 

  • Gupta S, Sangha MK, Kaur G, Atwal AK, Banga S, Banga SS (2012) Variability for leaf and seed glucosinolate contents and profiles in a germplasm collection of the Brassica juncea. Biochem Anal Biochem 1:1–5

    CAS  Google Scholar 

  • Hao JJ, Subbarao KV, Duniway JM (2003) Germination of Sclerotinia minor and S. sclerotiorum sclerotia under various soil moisture and temperature combinations. Phytopathology 93:443–450

    Article  CAS  PubMed  Google Scholar 

  • Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: when “to be or not to be” a pathogen? FEMS Microbiol Lett 251:177–184. doi:10.1016/j.femsle.2005.07.040

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Erickson RS, Phillippe LM, Mueller CA, Sun SK, Huang JW (2006) Control of apothecia of Sclerotinia sclerotiorum by soil amendment with S–H mixture or Perlka® in bean, canola and wheat fields. Soil Biol Biochem 38:1348–1352. doi:10.1016/j.soilbio.2005.10.015

    Article  CAS  Google Scholar 

  • Jensen B, Finckh M, Munk L, Hauser T (2008) Susceptibility of wild carrot (Daucus carota ssp. carota) to Sclerotinia sclerotiorum. Eur J Plant Pathol 122:359–367. doi:10.1007/s10658-008-9300-7

    Article  Google Scholar 

  • Jones EE, Rabeendran N, Stewart A (2014) Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Science and Technology: 1–21. doi: 10.1080/09583157.2014.940847

  • Kirkegaard JA, Sarwar M (1998) Biofumigation potential of Brassicas. Plant Soil 201:71–89

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Gardner PA, Desmarchelier JM, Angus JF (1993) Biofumigation — using Brassica species to control pests and diseases in horticulture and agriculture. In: Wratten N, Mailer RJ (eds) 9th Australian research assembly on brassicas. Agricultural Research Institute, Wagga Wagga

    Google Scholar 

  • Kojima M, Oawa K (1971) Studies on the effect of isothiocyanates and their analogues on microorganisms. (I) Effects of isothiocyanates on the oxygen uptake of yeasts. J Ferment Technol 49:740–746

    CAS  Google Scholar 

  • Kurt Ş, Güneş U, Soylu EM (2011) In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Manag Sci 67:869–875. doi:10.1002/ps.2126

    Article  CAS  PubMed  Google Scholar 

  • Larkin RP, Griffin TS (2007) Control of soilborne potato diseases using Brassica green manures. Crop Prot 26:1067–1077. doi:10.1016/j.cropro.2006.10.004

    Article  Google Scholar 

  • Leiner RH, Winton LM (2006) Differential production of sclerotia by isolates of Sclerotinia sclerotiorum from Alaska. Can J Plant Pathol 28:435–440. doi:10.1080/07060660609507317

    Article  CAS  Google Scholar 

  • Li Z, Zhang M, Wang Y, Li R, Dilantha FWG (2008) Mycelial compatibility group and pathogenicity variation of Sclerotinia sclerotiorum populations in sunflower from China, Canada and England. Plant Pathol J 7:131–139

    Article  Google Scholar 

  • Manici LM, Lazzeri L, Palmieri S (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45:2768–2773. doi:10.1021/jf9608635

    Article  CAS  Google Scholar 

  • Matheron ME, Porchas M (2008) Assessment of fungicides to manage Sclerotinia drop of lettuce in 2007. Vegetable Report

  • Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265. doi:10.1080/07352680600611543

    Article  CAS  Google Scholar 

  • McQuilken M (2011) Control of Sclerotinia disease on carrots. HDC Factsheet 19/11

  • Merriman PR (1976) Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol Biochem 8:385–389. doi:10.1016/0038-0717(76)90038-9

    Article  CAS  Google Scholar 

  • Mithen RF (2001) Glucosinolates and their degradation products. Advances in Botanical Research. Academic Press

  • Molina-Vargas LF (2013) Mechanism of action of isothiocyanates. A review. Agron Colomb 31:68–75

    Google Scholar 

  • Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34:1683–1690. doi:10.1016/s0038-0717(02)00153-0

    Article  CAS  Google Scholar 

  • Mueller DS, Pedersen WL, Hartman GL (2002) Effect of crop rotation and tillage system on Sclerotinia stem rot on soybean. Can J Plant Pathol 24:450–456. doi:10.1080/07060660209507033

    Article  Google Scholar 

  • Ojaghian MR, Jiang H, Xie G, Cui Z, Zhang J, Li B (2012) In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum. Plant Pathol J 28:185–190

    Article  CAS  Google Scholar 

  • Ordonez-Valencia C, Alarcon A, Ferrera-Cerrato R, Hernandez-Cuevas LV (2009) In vitro antifungl effects of potassium bicarbonate on Trichoderma sp. and Sclerotinia sclerotiorum. Mycoscience 50:380–387

    Article  CAS  Google Scholar 

  • Porter I, Pung H, Villalta O, Crnov R, Stewart A (2002) Development of biological controls for Sclerotinia diseases of horticultural crops in Australasia. 2nd Australasian lettuce Industry Conference, University of Queensland Gatton Campus.

  • Purdy LH (1979) Sclerotinia sclerotiorum: History, diseases and symptomatology. host range, geographical distribution and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  • Rahimi F, Rahmanpour S, Rezaee S, Larijani K (2013) Effect of volatiles derived from Brassica plants on the growth of Sclerotinia sclerotiorum. Arch Phytopathol Plant Protect 47:15–28. doi:10.1080/03235408.2013.800695

    Article  Google Scholar 

  • Rahmanpour S, Backhouse D, Nonhebel HM (2013) Toxicity of hydrolysis volatile products of Brassica plants to Sclerotinia sclerotiorum, in vitro. Arch Phytopathol Plant Protect: 1–6. doi: 10.1080/03235408.2013.860723

  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of Brassicas. Plant Soil 201:103–112. doi:10.1023/a:1004381129991

    Article  CAS  Google Scholar 

  • Sexton AC, Kirkegaard JA, Howlett BJ (1999) Glucosinolates in Brassica juncea and resistance to Australian isolates of Leptosphaeria maculans, the blackleg fungus. Australas Plant Pathol 28:95–102. doi:10.1071/AP99017

    Article  Google Scholar 

  • Smolinska U, Horbowicz M (1999) Fungicidal activity of volatiles from selected cruciferous plants against resting propagules of soil-borne fungal pathogens. J Phytopathol 147:119–124. doi:10.1046/j.1439-0434.1999.147002119.x

    Article  CAS  Google Scholar 

  • Swaminathan J, McLean KL, Pay JM, Stewart A (1999) Soil solarisation: a cultural practice to reduce viability of sclerotia of Sclerotinia sclerotiorum in New Zealand soils. N Z J Crop Hortic Sci 27:331–335. doi:10.1080/01140671.1999.9514113

    Article  Google Scholar 

  • Tollsten L, Bergström G (1988) Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry 27:2073–2077. doi:10.1016/0031-9422(88)80099-2

    Article  CAS  Google Scholar 

  • Tsao R, Yu Q, Potter J, Chiba M (2002) Direct and simultaneous analysis of sinigrin and allyl isothiocyanate in mustard samples by high-performance liquid chromatography. J Agric Food Chem 50:4749–4753

    Article  CAS  PubMed  Google Scholar 

  • Velasco P, Soengas P, Vilar M, Cartea ME (2008) Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. J Am Soc Hortic Sci 144:551–558

    Google Scholar 

  • Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates – A review. LWT Food Sci Technol 42:1561–1572. doi:10.1016/j.lwt.2009.05.023

    Article  CAS  Google Scholar 

  • Vleugels T, Baert J, van Bockstaele E (2013) Morphological and pathogenic characterization of genetically diverse Sclerotinia isolates from European red clover crops (Trifolium Pratense L.). J Phytopathol 161:254–262. doi:10.1111/jph.12056

    Article  CAS  Google Scholar 

  • Wathelet J-P, Iori R, Leoni O, Quinsac A, Palmieri S (2004) Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria 3:257–266

    Google Scholar 

  • Willetts H, Wong J (1980) The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot Rev 46:101–165. doi:10.1007/bf02860868

    Article  Google Scholar 

  • Zsolnai T (1966) Antimicrobial effect of thiocyanates and isothiocyanates. Arnzeim Forsch 16:870–876

    CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out as part of a PhD studentship (CP80) funded by the Horticultural Development Company, UK. The author acknowledges assistance from Andrew Jukes and Julie Jones at Warwick Crop Centre for their assistance and guidance with HPLC analysis and statistical analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Warmington.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warmington, R., Clarkson, J.P. Volatiles from biofumigant plants have a direct effect on carpogenic germination of sclerotia and mycelial growth of Sclerotinia sclerotiorum . Plant Soil 401, 213–229 (2016). https://doi.org/10.1007/s11104-015-2742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2742-8

Keywords

Navigation