Skip to main content
Log in

Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and scope

Plant communities and underlying soils undergo substantial, coordinated shifts throughout ecosystem development. However, shifts in the composition and function of mycorrhizal fungi remain poorly understood, despite their role as a major interface between plants and soil. We synthesise evidence for shifts among mycorrhizal types (i.e., ectomycorrhizas, arbuscular and ericoid mycorrhizas) and in fungal communities within mycorrhizal types along long-term chronosequences that include retrogressive stages. These systems represent strong, predictable patterns of increasing, then declining soil fertility during ecosystem development, and are associated with coordinated changes in plant and fungal functional traits and ecological processes.

Conclusions

Mycorrhizal types do not demonstrate consistent shifts through ecosystem development. Rather, most mycorrhizal types can dominate at any stage of ecosystem development, driven by biogeography (i.e., availability of mycorrhizal host species), plant community assembly, climate and other factors. In contrast to coordinated shifts in soil fertility, plant traits and ecological processes throughout ecosystem development, shifts in fungal communities within and among mycorrhizal types are weak or idiosyncratic. The consequences of these changes in mycorrhizal communities and their function for plant–soil feedbacks or control over long-term nutrient depletion remain poorly understood, but could be resolved through empirical analyses of long-term soil chronosequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2012) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22:535–544

    PubMed  CAS  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae; a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Google Scholar 

  • Alfredsen G, Hoiland K (2001) Succession of terrestrial macrofungi along a deglaciation gradient at Glacier Blaisen, South Norway. Nord J Bot 21:19–37

    Google Scholar 

  • Allen MF (1987) Re-establishment of mycorrhizas on Mount St Helens: migration vectors. Trans Br Mycol Soc 88:413–417

    Google Scholar 

  • Allen MF, MacMahon JA (1988) Direct VA mycorrhizal inoculation of colonizing plants by pocket gophers (Thomomys talpoides) on Mount St. Helens. Mycologia 80:754–756

    Google Scholar 

  • Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Re-formation of mycorrhizal symbioses on Mount St Helens, 1980-1990—interactions of rodents and mycorrhizal fungi. Mycol Res 96:447–453

    Google Scholar 

  • Arveby AS, Granhall U (1998) Occurrence and succession of mycorrhizas in Alnus incana. Swed J Agric Res 28:117–127

    Google Scholar 

  • Ashford AE, Allaway WG, Reed ML (1996) A possible role for the thick-walled epidermal cells in the mycorrhizal hair roots of Lysinema ciliatum R. Br. and other Epacridaceae. Ann Bot 77:375–381

    Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    PubMed  Google Scholar 

  • Avis PG (2012) Ectomycorrhizal iconoclasts: the ITS rDNA diversity and nitrophilic tendencies of foetid Russula. Mycologia. doi:10.3852/11-399

  • Bascompte J (2009) Disentangling the web of life. Science 325:416–419

    PubMed  CAS  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    PubMed  CAS  Google Scholar 

  • Bellei MD, Garbaye J, Gil M (1992) Mycorrhizal succession in young Eucalyptus viminalis plantations in Santa-Catarina (Southern Brazil). For Ecol Manag 54:205–213

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    PubMed  CAS  Google Scholar 

  • Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649

    PubMed  CAS  Google Scholar 

  • Berner C, Johansson T, Wallander H (2012) Long-term effect of apatite on ectomycorrhizal growth and community structure. Mycorrhiza. doi:10.1007/s00572-012-0438-y

  • Bever JD (1999) Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecol Lett 2:52–61

    Google Scholar 

  • Bever JD (2002) Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc Lond B Biol Sci 269:2595–2601

    Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–931

    Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    PubMed  Google Scholar 

  • Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    PubMed  Google Scholar 

  • Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    PubMed  Google Scholar 

  • Bingham MA, Simard SW (2013) Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For Ecol Manag 287:132–139

    Google Scholar 

  • Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland KI, Fontana G, Kauserud H (2012) Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol Ecol 21:1897–1908

    PubMed  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    PubMed  CAS  Google Scholar 

  • Bormann BT, Wang D, Snyder MC, Bormann FH, Benoit G, April R (1998) Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155

    CAS  Google Scholar 

  • Bornyasz MA, Graham RC, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126:141–160

    Google Scholar 

  • Bougoure DS, Parkin PI, Cairney JWG, Alexander IJ, Anderson IC (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4624–4636

    PubMed  CAS  Google Scholar 

  • Brenner DL, Amundson R, Baisden WT, Kendall C, Harden J (2001) Soil N and 15N variation with time in a California annual grassland ecosystem. Geochim Cosmochim Acta 65:4171–4186

    CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    CAS  Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73

    CAS  Google Scholar 

  • Bruns TD, Shefferson RP (2004) Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. Can J Bot 82:1122–1132

    CAS  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359

    PubMed  Google Scholar 

  • Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 year of a 99-year spore burial experiment. New Phytol 181:463–470

    PubMed  Google Scholar 

  • Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740

    Google Scholar 

  • Calvaruso C, Turpault M-P, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577

    PubMed  Google Scholar 

  • Caruso T, Rillig MC, Garlaschelli D (2012) On the application of network theory to arbuscular mycorrhizal fungi–plant interactions: the importance of basic assumptions. New Phytol 194:891–894

    PubMed  Google Scholar 

  • Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416

    PubMed  Google Scholar 

  • Chadwick OA, Chorover J (2001) The chemistry of pedogenic thresholds. Geoderma 100:321–353

    CAS  Google Scholar 

  • Chagnon PL, Bradley RL, Klironomos JN (2012) Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol. doi:10.1111/j.1469-8137.2011.04044.x

  • Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733–1740

    CAS  Google Scholar 

  • Chapin FS III, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Google Scholar 

  • Cheng L, Brooker FL, Cong T, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    PubMed  CAS  Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Le Frey-Klett FPT, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    CAS  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113

    PubMed  Google Scholar 

  • Crocker RL, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43:427–448

    Google Scholar 

  • Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol 128:225–234

    Google Scholar 

  • Day MJ, Currah RS (2011) Role of selected dark septate endophyte species and other hyphomycetes as saprobes on moss gametophytes. Botany 89:349–359

    Google Scholar 

  • del Moral R, Saura JM, Emenegger JN (2010) Primary succession trajectories on a barren plain, Mount St. Helens, Washington. J Veg Sci 21:857–867

    Google Scholar 

  • den Bakker HC, Zuccarello GC, Kuyper TH, Noordeloos ME (2004) Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol 163:201–215

    Google Scholar 

  • Dhillion SS (1994) Ectomycorrhizae, arbuscular mycorrhizae, and rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arct Alp Res 26:304–307

    Google Scholar 

  • Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:230–233

    PubMed  Google Scholar 

  • Dickie IA, Moyersoen B (2008) Towards a global view of ectomycorrhizal ecology. New Phytol 180:263–265

    PubMed  CAS  Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Google Scholar 

  • Dickie IA, Koide RT, Fayish AC (2001) Vesicular-arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol 151:257–264

    Google Scholar 

  • Dickie IA, Koide RT, Steiner KC (2002a) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72:505–521

    Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002b) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    CAS  Google Scholar 

  • Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375–382

    Google Scholar 

  • Dickie IA, Richardson SJ, Wiser SK (2009) Ectomycorrhizal fungal communities in two temperate Nothofagus rainforests respond to changes in soil chemistry after small-scale timber harvesting. Can J For Res 39:1069–1079

    CAS  Google Scholar 

  • Diez JM (2007) Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. J Ecol 95:159–170

    Google Scholar 

  • Doblas-Miranda E, Wardle DA, Peltzer DA, Yeates GW (2008) Changes in the community structure and diversity of soil invertebrates across the Franz Josef Glacier chronosequence. Soil Biol Biochem 40:1069–1108

    CAS  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Hubbert KR (2003) Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249:331–342

    CAS  Google Scholar 

  • Finlay R (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    PubMed  CAS  Google Scholar 

  • Fiore-Donno AM, Martin F (2001) Populations of ectomycorrhizal Laccaria amethystina and Xerocomus spp. show contrasting colonization patterns in a mixed forest. New Phytol 152:533–542

    CAS  Google Scholar 

  • Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127

    PubMed  Google Scholar 

  • Fleming LV (1984) Effects of soil trenching and coring on the formation of ectomycorrhizas on birch seedlings grown around mature trees. New Phytol 98:143–153

    Google Scholar 

  • Fleming LV, Deacon JW, Last FT, Donaldson SJ (1984) Influence of propagating soil on the mycorrhizal succession of birch seedlings transplanted to a field site. Trans Br Mycol Soc 82:707–711

    Google Scholar 

  • Fleming LV, Deacon JW, Last FT (1986) Ectomycorrhizal succession in a Scottish birch wood. In: Gianinazzi-Pearson V (ed) Physiological and genetical aspects of Mycorrhizae. INRA, Dijon, pp 259–264

    Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    PubMed  CAS  Google Scholar 

  • Fujiyoshi M, Yoshitake S, Watanabe K, Murota K, Tsuchiya Y, Uchida M, Nakatsubo T (2011) Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic, Svalbard. Polar Biol 34:667–673

    Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N Z J For Sci 5:33–41

    Google Scholar 

  • Galante TE, Horton TR, Swaney DP (2011) 95 % of basidiospores fall within 1 m of the cap: a field- and modeling-based study. Mycologia 103:1175–1183

    PubMed  Google Scholar 

  • Gao Q, Yang ZL (2010) Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza 20:281–287

    PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Gassibe PV, Fabero RF, Hernandez-Rodriguez M, Oria-de-Rueda JA, Martin-Pinto P (2011) Fungal community succession following wildfire in a Mediterranean vegetation type dominated by Pinus pinaster in Northwest Spain. For Ecol Manag 262:655–662

    Google Scholar 

  • Gazzè SA, Saccone L, Vala Ragnarsdottir K, Smits MM, Duran AL, Leake JR, Banwart SA, McMaster TJ. (2012) Nanoscale channels on ectomycorrhizal-colonized chlorite: evidence for plant-driven fungal dissolution. J Geophys Res 117:G00N09, doi:10.1029/2012JG002016

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    PubMed  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotech 15:257–270

    Google Scholar 

  • Gherbi H, Delaruelle C, Selosse MA, Martin F (1999) High genetic diversity in a population of the ectomycorrhizal basidiomycete Laccaria amethystina in a 150–year–old beech forest. Mol Ecol 8:2003–2013

    PubMed  CAS  Google Scholar 

  • Gibson F, Deacon JW (1990) Establishment of ectomycorrhizas in aseptic culture: effects of glucose, nitrogen and phosphorus in relation to successions. Mycol Res 94:166–172

    Google Scholar 

  • Glowa K, Arocena J, Massicotte H (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    CAS  Google Scholar 

  • Graham JH, Eissenstat DM (1994) Host genotype and the formation and function of VA mycorrhizae. Plant Soil 159:179–185

    Google Scholar 

  • Grau O, Rautio P, Heikkinen J, Saravesi K, Kozlov MV, Markkola A (2010) An ericoid shrub plays a dual role in recruiting both pines and their fungal symbionts along primary succession gradients. Oikos 119:1727–1734

    Google Scholar 

  • Grelet G-A, Meharg AA, Alexander IJ (2005) Carbon availability affects nitrogen source utilisation by Hymenoscyphus ericae. Mycol Res 109:469–477

    PubMed  CAS  Google Scholar 

  • Grelet G-A, Meharg AA, Duff EI, Anderson IC, Alexander IJ (2009) Small genetic differences between ericoid mycorrhizal fungi affect nitrogen uptake by Vaccinium. New Phytol 181:708–718

    PubMed  CAS  Google Scholar 

  • Grelet G-A, Johnson D, Vrålstad T, Alexander IJ, Anderson IC (2010) New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188:210–222

    PubMed  CAS  Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–718

    PubMed  Google Scholar 

  • Grünig CR, Queloz V, Sieber TN, Holdenrieder O (2008) Dark septate endophytes (DSE) of the Phialocephala fortinii sl-Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355–1369

    Google Scholar 

  • Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290

    CAS  Google Scholar 

  • Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (≡ Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27

    Google Scholar 

  • Harden JW (1982) A quantitative index of soil development from field descriptions: examples from a chronosequence in central California. Geoderma 28:1–28

    Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Google Scholar 

  • Hayward JA, Horton TR (2012) Edaphic factors do not govern the ectomycorrhizal specificity of Pisonia grandis (Nyctaginaceae). Mycorrhiza 22:647–652

    PubMed  Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Can J Bot 74:1496–1506

    Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1999) Plant growth and ectomycorrhiza formation by transplants on deglaciated land near Exit Glacier, Alaska. Mycorrhiza 8:297–304

    Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569

    PubMed  Google Scholar 

  • Hobbie EA, Jumpponen A, Trappe J (2005) Foliar and fungal (15) N :(14) N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146:258–268

    PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    PubMed  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    PubMed  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GW, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    PubMed  Google Scholar 

  • Hoffland E, Giesler R, Jongmans T, van Breemen N (2002) Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence. Ecosystems 5:11–22

    Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rossling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Google Scholar 

  • Hoffland E, Smits MM, van Schöll L, Landeweert R (2005) Rock-eating mycorrhizas: Mobilizing nutrients from minerals? In: Li CJ, Zhang FS, Doberman A, Hinsinger P, Oenema O, Peng SB, Rengel Z, Shen QR, Welch R, von Wirén N, Yan XL, Zhu YG (eds) Plant nutrition for food security, human health and environmental protection. Tsinghua University Press, Beihing, pp 802–803

    Google Scholar 

  • Hogberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554

    PubMed  Google Scholar 

  • Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963

    Google Scholar 

  • Horton TR (2006) The number of nuclei in basidiospores of 63 species of ectomycorrhizal Homobasidiomycetes. Mycologia 98:233–238

    PubMed  Google Scholar 

  • Horton TR, Cázares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11–18

    Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102

    Google Scholar 

  • Hutton J, Dixon KW, Sivasithamparam K, Pate JS (1997) Effect of habitat disturbance on inoculum potential of Ericoid endophytes of Western Australian heaths (Epacridaceae). New Phytol 135:739–744

    Google Scholar 

  • Ishida TA, Nara K, Tanaka M, Kinoshita A, Hogetsu T (2008) Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol 180:491–500

    PubMed  Google Scholar 

  • Jehne W, Thompson CH (1981) Endomycorrhizae in plant colonization on coastal sand–dunes at Cooloola, Queensland. Aust J Ecol 6:221–230

    Google Scholar 

  • Jenny H (1958) Role of the plant factor in the pedogenic functions. Ecology 39:5–16

    Google Scholar 

  • Jenny H (1980) The soil resource, origin and behaviour. Springer, New York

    Google Scholar 

  • Johnson NC, Zak DR, Tilman D, Pfleger FL (1991) Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia 86:349–358

    Google Scholar 

  • Johnston VR (1994) California forests and woodlands: A natural history. University of California Press, Berkeley and Los Angeles, California, USA, 222

  • Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    CAS  Google Scholar 

  • Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578

    Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Google Scholar 

  • Jumpponen A, Trappe JM, Cazares E (1999) Ectomycorrhizal fungi in Lyman Lake Basin: a comparison between primary and secondary successional sites. Mycologia 91:575–582

    Google Scholar 

  • Jumpponen A, Trappe JM, Cazares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12:43–49

    PubMed  Google Scholar 

  • Kardol P, Bezemer TM, Van der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9:1080–1088

    PubMed  Google Scholar 

  • Kennedy PG, Bruns TD (2005) Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings. New Phytol 166:631–638

    PubMed  Google Scholar 

  • Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107

    PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    PubMed  CAS  Google Scholar 

  • Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228

    PubMed  Google Scholar 

  • Kitayama K, Mueller-Dombois D (1995) Vegetation changes along gradients of long-term soil development in the Hawaiian montane rainforest zone. Plant Ecol 120:1–20

    Google Scholar 

  • Kjøller R, Olsrud M, Michelsen A (2010) Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol 3:205–214

    Google Scholar 

  • Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facelli E, Dickie IA, Bever JD (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189:366–370

    PubMed  Google Scholar 

  • Koele N, Turpault M-P, Hildebrand EE, Uroz S, Frey-Klett P (2009) Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol Biochem 41:1935–1942

    CAS  Google Scholar 

  • Koele N, Dickie IA, Oleksyn J, Richardson SJ, Reich PB (2012) No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytol 196:845–852

    PubMed  Google Scholar 

  • Kohout P, Sýkorová Z, Bahram M, Hadincová V, Albrechtová J, Tedersoo L, Vohník M (2011) Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza 21:403–412

    PubMed  Google Scholar 

  • Koide RT, Wu T (2003) Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytol 158:401–407

    Google Scholar 

  • Kropp BR, Fortin JA (1988) The incompatibility system and relative ectomycorrhizal performance of monokaryons and reconsitituted dikaryons of Laccaria bicolor. Can J Bot 66:289–294

    Google Scholar 

  • Krpata D, Muhlmann O, Kuhnert R, Ladurner H, Gobl F, Peintner U (2007) High diversity of ectomycorrhizal fungi associated with Arctostaphylos uva-ursi in subalpine and alpine zones: potential inoculum for afforestation. For Ecol Manag 250:167–175

    Google Scholar 

  • Kruger M, Kruger C, Walker C, Stockinger H, Schussler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    PubMed  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    PubMed  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    PubMed  Google Scholar 

  • Last FT, Mason PA, Ingleby K, Fleming LV (1984) Succession of fruitbodies of sheathing mycorrhizal fungi associated with Betula pendula. For Ecol Manag 9:229–234

    Google Scholar 

  • Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    PubMed  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Google Scholar 

  • Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92:1292–1302

    PubMed  Google Scholar 

  • Li D-W (2005) Release and dispersal of basidiospores from Amanita muscaria var. alba and their infiltration into a residence. Mycol Res 109:1235–1242

    PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    PubMed  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    PubMed  CAS  Google Scholar 

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695

    PubMed  CAS  Google Scholar 

  • Mangan SA, Herre EA, Bever JD (2010) Specificity between neotropical tree seedlings and their fungal mutualists leads to plant–soil feedback. Ecology 91:2594–2603

    PubMed  Google Scholar 

  • Mark AF, Grealish G, Ward CM, Wilson JB (1988) Ecological studies of a marine terrace sequence in the Waitutu Ecological District of southern New Zealand. Part 1: the vegetation and soil patterns. J R Soc N Z 18:29–58

    Google Scholar 

  • Martínez-García LB, Armas C, Miranda JD, Padilla FM, Pugnaire FI (2011) Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biol Biochem 43:682–689

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL (2005) Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza 15:101–110

    PubMed  CAS  Google Scholar 

  • McCormick MK, Lee Taylor D, Juhaszova K, Burnett RKJ, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523

    PubMed  Google Scholar 

  • Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59:325–334

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: Community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdu M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194:536–547

    PubMed  CAS  Google Scholar 

  • Moore J, Macalady JL, Schulz MS, White AF, Brantley SL (2010) Shifting microbial community structure across a marine terrace grassland chronosequence, Santa Cruz, California. Soil Biol Biochem 42:21–31

    CAS  Google Scholar 

  • Morales JM, Vázquez DP (2008) The effect of space in plant–animal mutualistic networks: insights from a simulation study. Oikos 117:1362–1370

    Google Scholar 

  • Moreau PA, Peintner U, Gardes M (2006) Phylogeny of the ectomycorrhizal mushroom genus Alnicola (Basidiomycota, Cortinariaceae) based on rDNA sequences with special emphasis on host specificity and morphological characters. Mol Phylogenet Evol 38:794–807

    PubMed  CAS  Google Scholar 

  • Moyersoen B, Fitter AH (1999) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247–253

    Google Scholar 

  • Moyersoen B, Beever RE, Martin F (2003) Genetic diversity of Pisolithus in New Zealand indicates multiple long-distance dispersal from Australia. New Phytol 160:569–579

    Google Scholar 

  • Muhlmann O, Peintner U (2008) Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 18:171–180

    PubMed  Google Scholar 

  • Muhlmann O, Bacher M, Peintner U (2008) Polygonum viviparum mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 18:87–95

    PubMed  Google Scholar 

  • Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    PubMed  CAS  Google Scholar 

  • Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198

    PubMed  Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206

    Google Scholar 

  • Navarro-Ródenas A, Pérez-Gilabert M, Torrente P, Morete A (2012) The role of phosphorus in the ectendomycorrhiza coninuum of desert truffle mycorrhizal plants. Mycorrhiza 22:565–575

    PubMed  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    PubMed  CAS  Google Scholar 

  • Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2:10–20

    Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    CAS  Google Scholar 

  • Oba H, Shinozaki N, Oyaizu H, Tawaraya K, Wagatsuma T, Barraquio WL, Saito M (2004) Arbuscular mycorrhizal fungal communities associated with some pioneer plants in the Lahar area of Mt. Pinatubo, Philippines. Soil Sci Plant Nutr 50:1195–1203

    Google Scholar 

  • Obase K, Tamai Y, Yajima T, Miyamoto T (2007) Mycorrhizal associations in woody plant species at the Mt. Usu volcano, Japan. Mycorrhiza 17:209–215

    PubMed  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–279

    PubMed  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E-A, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    PubMed  Google Scholar 

  • Oehl F, Schneider D, Sieverding E, Burga CA (2011a) Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps. Pedobiologia 54:321–331

    Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G (2011b) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    PubMed  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    PubMed  Google Scholar 

  • Orwin KH, Kirschbaum MU, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502

    PubMed  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. Plant Soil 179:141–150

    CAS  Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2010a) Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91:3631–3640

    PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Davies SJ, Tan S, Bruns TD (2010b) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542

    PubMed  CAS  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4:233–240

    Google Scholar 

  • Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136

    PubMed  Google Scholar 

  • Peintner U, Dammrich F (2012) Tomentella alpina and other tomentelloid taxa fruiting in a glacier valley. Mycol Prog 11:109–119

    Google Scholar 

  • Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529

    Google Scholar 

  • Pezzani F, Montana C, Guevara R (2006) Associations between arbuscular mycorrhizal fungi and grasses in the successional context of a two-phase mosaic in the Chihuahuan Desert. Mycorrhiza 16:285–295

    PubMed  Google Scholar 

  • Piercey MM, Thormann MN, Currah RS (2002) Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12:175–180

    PubMed  CAS  Google Scholar 

  • Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE (2007) Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:159–171

    Google Scholar 

  • Read DJ (1974) Pezizella ericae sp. nov., the perfect state of a typical mycorrhizal endophyte of Ericaceae. Trans Br Mycol Soc 63:381–419

    Google Scholar 

  • Read DJ (1993) Mycorrhiza in plant communities. Adv Plant Pathol 9:1–31

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking tree species, litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818

    Google Scholar 

  • Reiners WA, Worley IA, Lawrence DB (1971) Plant diversity in a chronosequence at Glacier Bay, Alaska. Ecology 52:55–69

    Google Scholar 

  • Reverchon F, Ortega-Larrocea MD, Perez-Moreno J, Pena-Ramirez VM, Siebe C (2010) Changes in community structure of ectomycorrhizal fungi associated with Pinus montezumae across a volcanic soil chronosequence at Sierra Chichinautzin, Mexico. Can J For Res 40:1165–1174

    CAS  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    PubMed  CAS  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139:267–276

    PubMed  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    PubMed  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    CAS  Google Scholar 

  • Rillig MC, Maestre FT, Lamit LJ (2003) Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 35:1257–1260

    CAS  Google Scholar 

  • Rodriguez-Cabal MA, Barrios-Garcia MN, Nuñez MA (2012) Positive interactions in ecology: filling the fundamental niche. Ideas Ecol Evol 5:36–41

    Google Scholar 

  • Rosling A, Landeweert R, Lindahl B, Larsson KH, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    CAS  Google Scholar 

  • Sanders IR (2004) Plant and arbuscular mycorrhizal fungal diversity – are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol 164:415–418

    Google Scholar 

  • Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J For Res 127:347–357

    Google Scholar 

  • Selmants PC, Hart SC (2008) Substrate age and tree islands influence carbon and nitrogen dynamics across a retrogressive semiarid chronosequence. Global Biogeochem Cycles 22: GB1021, doi:10.1029/2007GB003062

  • Selosse M, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    PubMed  CAS  Google Scholar 

  • Sikes BA, Maherali H, Klironomos JN (2012) Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos. doi:10.1111/j.1600-0706.2012.20160.x

  • Simard SW, Perry DA, Smith JE, Molina R (1997) Effects of soil trenching on occurrence of ectomycorrhizas on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136:327–340

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. 3rd edn. Academic Press, London, 787

  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192:699–712

    PubMed  Google Scholar 

  • Smits MM, Hoffland E, Jongmans AG, van Breemen N (2005) Contribution of mineral tunnelling to total feldspar weathering. Geoderma 125:59–69

    CAS  Google Scholar 

  • Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR (2012) Plant-driven weathering of apatite – the role of an ectomycorrhizal fungus. Geobiology 10:445–456

    PubMed  CAS  Google Scholar 

  • Spence LA, Dickie IA, Coomes DA (2011) Arbuscular mycorrhizal inoculum potential: a mechanism promoting positive diversity–invasibility relationships in mountain beech forests in New Zealand? Mycorrhiza 21:309–314

    PubMed  Google Scholar 

  • Stevens PR, Walker TW (1970) The chronosequence concept and soil formation. Q Rev Biol 45:333–350

    Google Scholar 

  • Suvi T, Tedersoo L, Abarenkov K, Beaver K, Gerlach J, Koljalg U (2010) Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species. Mycologia 102:522–533

    PubMed  Google Scholar 

  • Sverdrup H (2009) Chemical weathering of soil minerals and the role of biological processes. Fungal Biol Rev 23:94–100

    Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    PubMed  CAS  Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333

    PubMed  CAS  Google Scholar 

  • Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010) Low diversity and high host preference of ectomycorrhizal fungi in western Amazonia, a neotropical biodiversity hotspot. ISME J 4:465–471

    PubMed  Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttila AM (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134

    Google Scholar 

  • Terwilliger J, Pastor J (1999) Small mammals, ectomycorrhizae, and conifer succession in beaver meadows. Oikos 85:83–94

    Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Berch SG (2010) Net carbon transfer between Pseduotsuga menzeisii var. glauca seedlings in the field is influenced by soil disturbance. J Ecol 98:429–439

    CAS  Google Scholar 

  • Thebault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    PubMed  CAS  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  • Trocha LK, Oleksyn J, Turzanska E, Rudawska M, Reich PB (2007) Living on the edge: Ecology of an incipient Betula-fungal community growing on brick walls. Trees – Struct Funct 21:239–247

    Google Scholar 

  • Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293

    PubMed  Google Scholar 

  • Turnbull MH, Tissue DT, Griffin KL, Richardson SJ, Peltzer DA, Whitehead D (2005) Respiration characteristics in temperate rainforest tree species differ along a long-term soil-development chronosequence. Oecologia 143:271–279

    PubMed  Google Scholar 

  • Turner BL, Wells A, Andersen KM, Condron LM (2012a) Patterns of tree community composition along a coastal dune chronosequence in lowland temperate rain forest in New Zealand. Plant Ecol 213:1525–1541

    Google Scholar 

  • Turner BL, Lambers H, Condron LM, Cramer MD, Leake JR, Richardson AE, Smith SE (2012) Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil: in press

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    PubMed  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205

    PubMed  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    PubMed  CAS  Google Scholar 

  • Usuki F, Narisawa K (2005) Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chaetospira within roots of Rhododendron obtusum var. kaempferi. Mycorrhiza 15:61–64

    PubMed  Google Scholar 

  • van der Heijden EW, Vosatka M (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. II. Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi. Can J Bot 77:1833–1841

    Google Scholar 

  • van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    PubMed  Google Scholar 

  • van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Google Scholar 

  • Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62

    CAS  Google Scholar 

  • Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164:183–192

    CAS  Google Scholar 

  • Villarreal-Ruiz L, Neri-Luna C, Anderson IC, Alexander IJ (2012) In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis 56:67–75

    CAS  Google Scholar 

  • Vitousek PM (1998) Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1:401–407

    CAS  Google Scholar 

  • Vohník M, Albrechtová (2011) The co-occurence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot 46:373–386

    Google Scholar 

  • Vralstad R, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata – the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563

    CAS  Google Scholar 

  • Walker LR, Chapin FS (1987) Interactions among processes controlling successional change. Oikos 50:131–135

    Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Walker J, Thompson CH, Fergus IF, Tunstall BR (1981) Plant succession and soil development in coastal sand dunes of subtropical eastern Australia. In: West DC, Shugart HH, Botkin DB (eds) Forest succession: Concepts and application. Springer, New York, pp 107–131

    Google Scholar 

  • Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191:515–527

    PubMed  Google Scholar 

  • Wallander H, Thelin G (2008) The stimulating effect of apatite on ectomycorrhizal growth diminishes after PK fertilization. Soil Biol Biochem 40:2517–2522

    CAS  Google Scholar 

  • Wallander H, Morth CM, Giesler R (2009) Increasing abundance of soil fungi is a driver for (15)N enrichment in soil profiles along a chronosequence undergoing isostatic rebound in northern Sweden. Oecologia 160:87–96

    PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: Linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    PubMed  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A (2008) The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos 117:93–107

    Google Scholar 

  • Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB (2012) Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16–30

    Google Scholar 

  • Warner NJ, Allen MF, MacMahon JA (1987) Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79:721–730

    Google Scholar 

  • Weijtmans K, Davis M, Clinton P, Kuyper TW, Greenfield L (2007) Occurrence of arbuscular mycorrhiza and ectomycorrhizas on Leptospermum scoparium from the Rakia catchment, Caterbury. N Z J Ecol 31:255–260

    Google Scholar 

  • Weiß M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6:e16793

    PubMed  Google Scholar 

  • Westman WE (1975) Edaphic climax pattern of the pygmy forest region of California. Ecol Monogr 45:109–135

    Google Scholar 

  • Whitehead D, Boelman NT, Turnbull MH, Griffin KL, Tissue DT, Barbour MM, Hunt JE, Richardson SJ, Peltzer DA (2005) Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand. Oecologia 144:233–244

    PubMed  Google Scholar 

  • Williamson WM, Wardle DA, Yeates GW (2005) Changes in soil microbial and nematode communities during ecosystem decline across a long-term chronosequence. Soil Biol Biochem 37:1289–1301

    CAS  Google Scholar 

  • Wright SH, Berch SM, Berbee ML (2009) The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla). Mycorrhiza 19:267–276

    PubMed  CAS  Google Scholar 

  • Wu BY, Hogetsu T, Isobe K, Ishii R (2007) Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza 17:495–506

    PubMed  CAS  Google Scholar 

  • Wurzburger N, Higgins BP, Hendrick RL (2012) Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub. Ecol Evol 2:65–79

    PubMed  Google Scholar 

  • Yu TEJ-C, Egger KN, Peterson RL (2001) Ectendomycorrhizal associations—characteristics and functions. Mycorrhiza 11:167–177

    CAS  Google Scholar 

  • Zaffarano PL, Queloz V, Duó A, Grünig CR (2011) Sex in the PAC: a hidden affair in dark septate endophytes? BMC Evol Biol 11:282

    PubMed  Google Scholar 

  • Zangaro W, Alves RA, Lescano LE, Ansanelo AP, Nogueira MA (2012) Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in three Brazilian ecosystems. Biotropica 44:141–150

    Google Scholar 

Download references

Acknowledgments

This research was primarily supported by Core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group, with additional funding to I.A.D. and N.K. from the Marsden Fund of the Royal Society of New Zealand. G.-A. G is funded by a Marie Curie international outgoing fellowship (IOF-GA-2010-252446) from the European Commission and J.M.T. by a Rutherford Discovery Fellowship administered by the Royal Society of New Zealand. We also thank Christine Bezar for editing the text, Paul Selmants and Troy Baisden for sharing botanical knowledge of the Northern Arizona and San Joaquin Valley chronosequences, respectively, and Matt McGlone, Ben Sikes, Tom Bruns and two anonymous reviewers for review and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Dickie.

Additional information

Responsible Editor: Benjamin, Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickie, I.A., Martínez-García, L.B., Koele, N. et al. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367, 11–39 (2013). https://doi.org/10.1007/s11104-013-1609-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1609-0

Keywords

Navigation