Skip to main content
Log in

Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To identify active diazotrophs in sugarcane, 16S rRNA and nifH transcript analyses were applied. This should help to better understand the basis of the biological nitrogen fixation (BNF) activity of a high nitrogen fixing sugarcane variety. A field experiment using the sugarcane variety RB 867515 was conducted in Seropédica, RJ, Brazil, receiving the following treatments: unfertilised and fertilised controls without inoculation, unfertilised with inoculation. The five-strain mixture developed by EMBRAPA-CNPAB was used as inoculum. Root and leaf sheath samples were harvested in the third year of cultivation to analyse the 16S rRNA and nifH transcript diversity. In addition to nifH expression from Gluconacetobacter spp. and Burkholderia spp., a wide diversity of nifH sequences from previously uncharacterised Ideonella/Herbaspirillum related phylotypes in sugarcane shoots as well as Bradyrhizobium sp. and Rhizobium sp. in roots was found. These results were confirmed using 16S cDNA analysis. From the inoculated bacteria, only nifH transcripts from G. diazotrophicus and B. tropica were detected in leaf sheaths and roots. Known as well as yet uncultivated diazotrophs were found active in sugarcane roots and stems using molecular analyses. Two strains of the inoculum mix were identified at the late summer harvest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu Kwaik Y, Pederson LL (1996) The use of differential display-PCR to isolate and characterize a Legionella pneumophila locus induced during the intracellular infection of macrophages. Mol Microbiol 21:543–556

    Article  PubMed  CAS  Google Scholar 

  • Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, Yoneyama T (2005) Detection of nifH sequences in Sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr 51:303–308

    Article  CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  PubMed  CAS  Google Scholar 

  • Biggs IM, Stewart GR, Wilson JR, Critchley C (2002) 15N natural abundance studies in Australian commercial sugarcane. Plant Soil 238:21–30

    Article  CAS  Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJ, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugarcane and other grasses. Aust J Plant Physiol 28:889–895

    Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJ, Reis VM (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Boddey RM, Soares LHB, Alves BJR, Urquiaga S (2008) Bio-ethanol production in Brazil. In: Pimentel D (ed) Biofuels, solar and wind as renewable energy systems. Springer, USA, p 504

    Google Scholar 

  • Buddrus-Schiemann K, Schmid S, Schreiner K, Welzl G, Hartmann A (2010) Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb Ecol 60:381–393

    Article  PubMed  Google Scholar 

  • Burbano CS, Liu Y, Roesner KL, Reis VM, Caballero-Mellado J, Reinhold-Hurek B, Hurek T (2011) Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environ Microbiol Reports 3:383–389

    Article  CAS  Google Scholar 

  • Cavalcante VA, Doebereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37(suppl 1):D141–D145

    Article  PubMed  CAS  Google Scholar 

  • da Silva MF, de Oliveira PJ, Xavier GR, Rumjanek NG, Reis VM (2009) Inoculants containing polymers and endophytic bacteria for the sugarcane crop. Pesquisa Agropecuaria Brasileira 44:1437–1443

    Article  Google Scholar 

  • Doebereiner J (1961) Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugarcane. Plant Soil 15:211–216

    Article  Google Scholar 

  • Doebereiner J (1995) Isolation and identification of aerobic nitrogen fixing bacteria. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 134–141

    Google Scholar 

  • Doebereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    Article  CAS  Google Scholar 

  • Doebereiner J, Day JM, Dart PJ (1972) Nitrogenase activity in the rhizosphere of sugarcane. J Gen Microbiol 71:103–116

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM (1966) An improved method of testing for evolutionary homology. J Mol Biol 16:9–16

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Gluconacetobacter diazotrophicus is inhibited by high N-fertilisation. FEMS Microbiol Ecol 29:117–128

    Article  CAS  Google Scholar 

  • Hoefsloot G, Termorshuizen AJ, Watt DA, Cramer MD (2005) The contribution of diazotrophic bacteria to the nitrogen budget of a commercially grown South African sugarcane cultivar. Plant Soil 277:85–96

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Hurek T, Handley L, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    Article  PubMed  CAS  Google Scholar 

  • IBGE (2010) http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/lspa_201012_1.shtm (25/01/2011)

  • James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. CRC Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • Kuykendall DL (2005) Genus I. Bradyrhizobium Jordan 1982. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edition, Volume 2, the Proteobacteria. Springer, New York, pp 438–443

    Chapter  Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiol 147:981–993

    CAS  Google Scholar 

  • Lima E, Boddey RM, Doebereiner J (1987) Quantification of biological nitrogen fixation associated with sugarcane using 15N aided balance. Soil Ecol Biochem 19:165–170

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H et al (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258

    Article  PubMed  CAS  Google Scholar 

  • Miller DN (2001) Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments. J Microbiol Meth 44:49–58

    Article  CAS  Google Scholar 

  • Muyzer G, Hottentraeger S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-ampliced 16S rDNA—a new molecular approach to analyze the genetic diversity of mixed microbial communities. In: Akkermans ADL, Van Elsas JD, De Brujin F (eds) Molecular microbial ecology manual. pp. 3.4.4/1-23. Kluwer Academic, Dordrecht

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Doebereiner J (1996) Occurrence of endophytic diazotroph Herbaspirillum spp. in roots, stems and leaves predominantly of gramineae. Biol Fertil Soils 21:197–200

    Article  Google Scholar 

  • Oliveira ALM, Urquiaga S, Doebereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Oliveira ALM, Canuto EL, Silva EE, Reis VM, Baldani JI (2004) Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Braz J Microbiol 35:295–299

    Article  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with endophytic diazotrophic bacteria. Plant Soil 284:23–32

    Article  CAS  Google Scholar 

  • Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113

    Article  CAS  Google Scholar 

  • Ormeño-Orrillo E, Rogel MA, Lloret L, López A, Martínez J, Vinuesa P, Martínez-Romero E (2009) Rhizobial diversity in different land use systems in the rain forest of Los Tuxtlas, Mexico. In: Barois I, Huising EJ, Okoth P, Trejo D, De Los Santos M (eds), Below-ground biodiversity in Sierra Santa Marta, Los Tuxtlas, Veracruz, México. Xalapa, México. p. 65–84

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  PubMed  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Urquiaga S, Pereira W, Hipolito G, De Barros JC et al (2008) Reposta de duas variedades de cana-de-acucar a inoculacao com bacterias diazotroficas. Anais do 9o Congresso Nacional da STAB Maceia: Universidade Federal de Alagoas 1: 681–686

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Roesch LFW, Olivares FL, Passaglia LMP, Selbach PA et al (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J Microbiol Biotechnol 22:967–974

    Article  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104

    Article  CAS  Google Scholar 

  • Ruschel AP, Henis Y, Salati E (1975) Nitrogen-15 tracing of N-fixation with soil-grown sugarcane seedlings. Soil Biol Biochem 7:181–182

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif—mutants strains. Mol Plant Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes Environ 23:89–93

    Article  PubMed  Google Scholar 

  • Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449

    Article  CAS  Google Scholar 

  • Toewe S, Wallisch S, Bannert A, Fischer D, Hai B, Haesler F, Kleineidam K, Schloter M (2011) Improved protocol for the simultaneous extraction and column-based separation of DNA and RNA from different soils. J Microbiol Meth 84:406–412

    Article  CAS  Google Scholar 

  • Urquiaga S, Cruz KH, Boddey RM (1992) Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane D (1991) 16S ribosomal DNA amplification for phylogeneic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Yoneyama T, Muraoka T, Kim TH, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Deutsche Forschungsgemeinschaft (Grant Ha 1708/9), EMBRAPA and the Helmholtz Zentrum München is greatly acknowledged. Financial support came also from INCT/CNPq (proc. no 573828/2008-3) and CT-AGRO (proc. no 480178/2005-4) projects for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hartmann.

Additional information

Responsible Editor: Euan K. James.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Number of sequences achieved from the different sugarcane plant tissues grown in field with and without the mixed inoculant and nitrogen fertilisation (DOC 32 kb)

Table S2

Organisms and AccessionNumbers (GenBank) of nifH phylogeny used for calculation (DOC 63 kb)

Table S3

Accession-Numbers (GenBank) of 16S rRNA and nifH sequences obtained in this study and used for calculation of phylogeny (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, D., Pfitzner, B., Schmid, M. et al. Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356, 83–99 (2012). https://doi.org/10.1007/s11104-011-0812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0812-0

Keywords

Navigation