Skip to main content
Log in

Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Phytoremediation offers a cheap, efficient and environmentally friendly option for cleaning sites contaminated with toxic elements. However, there is a need to find new plant species for phytoremediation and to understand the mechanisms involved in processes such as tolerance, accumulation, exclusion and metabolism of toxic metals in plants. Thereby, in this study, the ability of Acacia farnesiana (L.) Willd to tolerate and accumulate lead was analyzed. Seedlings grown in vitro with 250 and 500 mg Pb2+ L−1 showed an increase in their growth, achieving tolerance indexes close to 100%. In seedlings exposed to 1,000 mg Pb2+ L−1, growth was strongly inhibited, finding an effective concentration 50% (EC50) from 720 to 766 mg Pb2+ L−1. A. farnesiana accumulated ≥80% of the Pb2+ in roots (up to 51,928 mg kg−1 of air-dried tissue) in seedlings exposed to 1,000 mg Pb2+ L−1, with high bioconcentration (>8.5) and low translocation (≤0.03) factors. These results indicate the suitability of A. farnesiana for lead-phytostabilization purposes. Lead concentrations below 500 mg L−1 had no significant effect on lipid peroxidation and enhanced the glutathione content, suggesting that the ability of A. farnesiana to withstand the Pb-induced oxidative stress could be related to glutathione metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

MS:

Murashige & Skoog

EDTA:

Ethylene-diamine-tetraacetic acid

EU:

Experimental unit

FW:

Fresh weight

ADW:

Air-dried weight

TI:

Tolerance index

EC50 :

Effective concentration 50%

BCF:

Bioconcentration factor

TF:

Translocation factor

GR:

Glutathione reductase

MDA:

Malondialdehyde

DTNB:

5,5′-dithiobis-2-nitrobenzoic acid

TNB:

5-thio-2-nitrobenzoic acid

GSHT :

Total glutathione

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide (oxidized glutathione)

References

  • Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Meth Enzymol 77:373–382

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–99

    Article  CAS  PubMed  Google Scholar 

  • Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106(s1):93–111

    CAS  Google Scholar 

  • Barkay T, Schaefer J (2001) Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4:318–323

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  Google Scholar 

  • Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N, Cherian MG, Chiueh CC, Clarkson TW (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol 222:122–128

    Article  CAS  PubMed  Google Scholar 

  • Cañedo-Ortiz BO, Perez-Reyes ME, Perez-Molphe E (2000) Somatic embryogenesis and plant regeneration in Acacia farnesiana and A. schaffneri. In Vitro Cell Dev Biol - Plant 36:268–272

    Article  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257

    CAS  PubMed  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Carbiovasc Dis 15:316–328

    Article  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80

    Article  CAS  PubMed  Google Scholar 

  • Dey SK, Dey J, Patra S, Pothal D (2007) Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 19:53–60

    Article  CAS  Google Scholar 

  • Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul, 61: doi:10.1007/s10725-010-9454-0

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  • Francis JK (2002) Acacia farnesiana (L.) Willd. In: Vozzo JA (Ed.) Tropical Tree Seed Manual. Part II—Species Descriptions. USDA Forest Service, Washington DC, Agricultural Handbook, 721. 899 pp

  • Freeman JI, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulator. Plant Cell 16:2176–2191

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  PubMed  Google Scholar 

  • Geebelena W, Vangronsvelda J, Adriano DC, Van Poucke LC, Clijsters H (2002) Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol Plantarum 115:377–384

    Article  Google Scholar 

  • Gratão P, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Göthberg A, Greger M, Holm K, Bengtsson BE (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J Environ Qual 33:1247–1255

    Article  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed  Google Scholar 

  • Klassen SP, Malean JE, Grossl PR, Sims RC (2000) Heavy metals in the environment. J Environ Qual 29:1826–1834

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant-Microb Interact 17:6–15

    Article  CAS  Google Scholar 

  • Liu D, Zou J, Meng Q, Zou J, Jiang W (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  • Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Naumann B, Eberius M, Appenroth KJ (2007) Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664

    Article  CAS  PubMed  Google Scholar 

  • Nouairi I, Ben AW, Ben YN, Ben Miled DD, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Rizzi L, Petruzzelli G, Poggio G, Vigna Guidi G (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–66

    Article  CAS  PubMed  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–325A

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sharma NC, Sahi SV, Jain JC (2005) Sesbania drummondii cell cultures: ICP-MS determination of the accumulation of Pb and Cu. Microchem J 81:163–169

    Article  CAS  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    CAS  PubMed  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinsabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Smith IK, Vieweller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: A Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556

    Article  CAS  PubMed  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Volke Sepulveda TL, Velasco JA, de la Rosa DA (2005) Suelos contaminados por metales y metaloides: muestreo y alternativas para su remediación. Instituto Nacional de Ecología - Secretaría de Medio Ambiente y Recursos Naturales (INE-SEMARNAT). ISBN: 968-817-492-0. 141 pp

  • Wang C, Wang X, Tian Y, Xue Y, Xu X, Sui Y, Yu H (2008) Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotox Environ Safe 71:685–691

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge to Consejo Nacional de Ciencia y Tecnologia (CONACyT) for its financial support in part of this research. A. Maldonado-Magaña also thanks CONACyT for the financial support (scholarship 211555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania L. Volke-Sepulveda.

Additional information

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado-Magaña, A., Favela-Torres, E., Rivera-Cabrera, F. et al. Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Soil 339, 377–389 (2011). https://doi.org/10.1007/s11104-010-0589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0589-6

Keywords

Navigation