Skip to main content
Log in

C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Ecological stoichiometry has been widely applied in aquatic ecosystems, but has limited implications in terrestrial ecosystems. The pot experiments with Trifolium repens L. were conducted to demonstrate the relations between C: N: P, biological components and growth rate of clover colonized by arbuscular mycorrhizal (AM) fungi. The results showed that for mycorrhizal clover, N, P concentrations increased with increasing growth rate, in support of the Growth Rate Hypothesis (GRH). Mycorrhizal clover had higher P and RNA concentrations than non-mycorrhizal clover, indicating that the increase in P concentration would invest more RNA to meet the synthesis of protein. Results also indicated that the increase in N concentration with rapid growth rate may be attributed to the increase in the concentration of protein N. Underlying mechanisms driving the association of C: N: P with growth rate for symbiotic partners should help elucidate the allocation of major nutrients to cellular organs and trophic dynamics in terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303. doi:10.1146/annurev.phyto.41.052002.095518

    Article  CAS  PubMed  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207. doi:10.1007/BF00012037

    Article  CAS  Google Scholar 

  • Brandhorst BP, McConkey EH (1974) Stability of nuclear RNA in mammalian cells. J Mol Biol 85:451–463. doi:10.1016/0022-2836(74)90444-6

    Article  CAS  Google Scholar 

  • Campana T, Schwartz LM (1981) RNA and associated enzymes. In: Schwartz LM, Azar MM (eds) Advanced cell biology. Van Nostrand Reinhold, New York, USA, pp 877–944

    Google Scholar 

  • Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229. doi:10.1023/B:PLSO.0000035538.09222.ff

    Article  CAS  Google Scholar 

  • Chen BD, Zhu YG, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380. doi:10.1016/j.envpol.2006.04.027

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  • Daufresne T, Loreau M (2001) Plant-herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation? Ecol Lett 4:196–206. doi:10.1046/j.1461-0248.2001.00210.x

    Article  Google Scholar 

  • Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observation and consequences. Ecology 80:735–751

    Google Scholar 

  • Elser JJ, Dobberfuhl D, Mackay NA, Schampel JH (1996) Organism size, life history, and N: P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience 46:674–684. doi:10.2307/1312897

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison J, Hobbie SE, Odell GM, Weider LJ (2000a) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550. doi:10.1046/j.1461-0248.2000.00185.x

    Article  Google Scholar 

  • Elser JJ, Dowling T, Dobberfuhl DA, O’Brien J (2000b) The evolution of ecosystem processes: ecological stoichiometry of a key herbivore in temperate and arctic habitats. J Environ Biol 13:845–853

    Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943. doi:10.1046/j.1461-0248.2003.00518.x

    Article  Google Scholar 

  • Elser JJ, Watts T, Bitler B, Markow TA (2006) Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Funct Ecol 20:846–856. doi:10.1111/j.1365-2435.2006.01165.x

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi:10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Gorokhova E, Dowling TE, Crease WLJ, TJ EJJ (2002) Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection of production rate. Proc Roy Soc London B269:2373–2379

    Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Hessel R, van Asch T (2003) Modelling gully erosion for a small catchment on the Chinese Loess Plateau. Catena 54:131–146. doi:10.1016/S0341-8162(03)00061-4

    Article  Google Scholar 

  • Hessen DO, Lyche A (1991) Inter- and intraspecific variations in zooplankton element composition. Arch Hydrobiol 121:343–353

    Google Scholar 

  • Hessen DO, Jensen TC, Kyle M, Elser JJ (2007) RNA responses to N- and P-limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct Ecol 21:956–962. doi:10.1111/j.1365-2435.2007.01306.x

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Englewood Cliffs, N.J.

    Google Scholar 

  • Jiang D, Qi L, Tan J (1981) Soil erosion and conservation in the Wuding River Valley, China. In: Morgan RPC (ed) Soil conservation. Wiley, Chichester, pp 461–479

    Google Scholar 

  • Jones JB (1991) Kjeldahl method for nitrogen determination. Micro-Macro, Athens, GA

    Google Scholar 

  • Karpinets TV, Greenwood D, Sams CE, Ammons JT (2006) Does excess carbon affect respiration of the rotifer Brachyonus calyciflorus Pallas? Freshw Biol 51:2320–2333. doi:10.1111/j.1365-2427.2006.01653.x

    Article  CAS  Google Scholar 

  • Kyle M, Watts T, Schade J, Elser JJ (2003) A microfluorometric method for quantifying RNA and DNA in terrestrial insects. J Insect Sci 3(1):1–7. doi:10.1672/1536-2442(2003)003[0001:TMOAAE]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Li HS (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, pp 186–191

    Google Scholar 

  • Lovelock CE, Feller IC, Ball MC, Ellis J, Sorrell B (2007) Testing the growth rate and geochemical hypothesis for latitudinal variation in plant nutrients. Ecol Lett 10:1154–1163. doi:10.1111/j.1461-0248.2007.01112.x

    Article  CAS  PubMed  Google Scholar 

  • Lu RK (1999) Analytical methods for soils and agricultural chemistry. China Agricultural Science and Technology, Beijing

    Google Scholar 

  • Main T, Dobberfuhl DR, Elser JJ (1997) N: P stoichiometry and ontogeny in crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478

    Article  CAS  Google Scholar 

  • Marschner H (1998) Role of root growth, arbuscular mycorrhiza and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207. doi:10.1016/S0378-4290(97)00131-7

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Portillo M, Fenoll C, Escobar C (2006) Evaluation of different RNA extraction methods for small quantities of plant tissue: Combined effects of reagent type and homogenization procedure on RNA quality-integrity and yield. Physiol Plant 128:1–7. doi:10.1111/j.1399-3054.2006.00716.x

    Article  CAS  Google Scholar 

  • Read D (1991) Mycorrhizas in ecosystems. Experientia 47:376–391. doi:10.1007/BF01972080

    Article  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:2281–2291. doi:10.1126/science.289.5486.1920

    Article  Google Scholar 

  • Reiners WA (1986) Complementary models for ecosystems. Am Nat 127:59–73. doi:10.1086/284467

    Article  Google Scholar 

  • Schade JD, Kyle M, Hobbie SE, Fagan WF, Elser JJ (2003) Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol Lett 6:96–101. doi:10.1046/j.1461-0248.2003.00409.x

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Sterner RW (1995) Elemental stoichiometry of species in ecosystems. In: Jones C, Lawton J (eds) Linking species and ecosystem. Chapman and Hall, New York, USA, pp 240–252

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton and Oxford

    Google Scholar 

  • Vrede T, Andersen T, Hessen DO (1998) Phosphorus distribution in three crustacean zooplankton species. Limnol Oceanogr 44:225–229

    Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) Functional connections among organism C:N:P stoichiometry, macromolecular composition and growth. Ecology 85:1217–1229. doi:10.1890/02-0249

    Article  Google Scholar 

  • Weider LJ, Makino W, Acharya K, Glenn KL, Kyle M, Urabe J, Elser JJ (2005) Genotype-environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143:537–547. doi:10.1007/s00442-005-0003-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the Natural Science Foundation of China (project no. 40621061) for providing financial support for this research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Zhu.

Additional information

Responsible Editor: Thom W. Kuyper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.M., Yin, H.B., O’Connor, P. et al. C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326, 21–29 (2010). https://doi.org/10.1007/s11104-009-9982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9982-4

Keywords

Navigation