Skip to main content

Advertisement

Log in

Phenology of five tree species of a tropical dry forest in Yucatan, Mexico: effects of environmental and physiological factors

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In order to relate phenological responses of trees to environmental variables we recorded the phenological patterns and select morphological and physiological traits (wood density and water potentials) of five tree species (Acacia gaumeri, Apoplanesia paniculata, Bursera simaruba, Gymnopodium floribundum, and Diospyros cuneata) in the tropical dry deciduous forest of the National Park of Dzibilchaltún, Yucatan, Mexico, over a period of 2 years (2004 and 2005). We chose two sites: one close to a permanent water source, locally known as ‘cenote’ (the CC site, ground water table was found at 2 m) and the other far from the cenote (FC site ground water table was at a depth of 10 m). Sites mainly differed in soil depth (FC site having greater soil depth) and soil nutrient characteristics (FC site more potassium, CC site more phosphorous). Our results indicated significant differences in phenology within species between sites and years, with leaf, flower and fruit production tending to be higher at the CC site and in the year 2004. Wood density and xylem water potentials were negatively related to each other, and midday water potentials were higher at the CC site. Differences in phenology found among years suggest that the timing of rainfall as well as the duration of periods without rain may play a more important role in phenology than total annual precipitation. Also differences inter-sites suggest a strong effect of site on tree phenology. Proximity to superficial bodies of water, such as cenotes, coupled with a greater concentration of available phosphorus in the soil may modify the effect of drought in this tropical dry deciduous forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Borchert R (1994a) Induction of rehydration and budbreak by irrigation or rain in deciduous trees of a tropical dry forest in Costa Rica. Trees 8:198–204

    Article  Google Scholar 

  • Borchert R (1994b) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75(5):1437–1449

    Article  Google Scholar 

  • Borchert R (1998) Response of tropical trees to rainfall seasonality and its long-term changes. Clim Change 39:381–393

    Article  Google Scholar 

  • Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221

    CAS  PubMed  Google Scholar 

  • Borchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34:27–39

    Google Scholar 

  • Borchert R, Meyer SA, Felger RS, Porter-Bolland L (2004) Environmental control of flowering periodicity in Costa Rican and Mexican tropical dry forests. Global Ecol Biogeogr 13:409–425

    Article  Google Scholar 

  • Borchert R, Pockman WT (2005) Water storage capacitance and xylem tension in isolates branches of temperate and tropical trees. Tree Physiol 25:457–466

    PubMed  Google Scholar 

  • Box EO (1996) Plant functional types and climate at global scale. J Veg Sc 7:309–320

    Article  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis vol. 2. American Society of Agricultural, USA, pp 1149–1178

    Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899

    CAS  PubMed  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG (2005) Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees. Trees 19:296–304

    Article  Google Scholar 

  • Bullock SH, Solis-Magallanes A (1990) Phenology of canopy trees of a tropical deciduous forest in Mexico. Biotropica 22(1):22–35

    Article  Google Scholar 

  • Campo J, Dirzo R (2003) Leaf quality and herbivory response to soil nutrient addition in secondary tropical dry forests of Yucatan, Mexico. J Trop Ecol 19:525–530

    Google Scholar 

  • Coley PD, Kursar TA (1996) Antiherbivore defenses of young tropical leaves: physiological constraints and ecological tradeoffs. In: Smith AP, Mulkey SS and Chazdon RL (eds) Tropical forest plant ecophysiology. Chapman & Hall, USA. pp 305–336

  • Ceccon E, Huante P, Campo J (2003) Effects of nitrogen and phosphorus fertilization on the survival and recruitment of seedlings of dominant tree species in two abandoned tropical dry forest in Yucatán. México. For. Ecol. Manag. 182:387–402

    Google Scholar 

  • Daubenmire R (1972) Phenology and other characteristics of tropical semi-deciduous forest in northeastern Costa Rica. J Ecol 60:147–170

    Article  Google Scholar 

  • Devineau JL (1999) Seasonal rhythms and phenological plasticity of savanna woody species in a fallow farming system (south-west Burkina Faso). J Trop Ecol 15:497–513

    Article  Google Scholar 

  • Eamus D, Prior L (2001) Ecophysiology of trees of seasonally dry tropics: Comparisons among phenologies. Adv Ecol Res 32:113–197

    Article  CAS  Google Scholar 

  • Elliot S, Baker PJ, Borchert R (2006) Leaf-flushing during the dry season: The paradox of Asian monsoon forests. Global Ecol Biogeogr 15:248–257

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid change in flowering time in British plants. Science 296:1689–1692

    Article  CAS  PubMed  Google Scholar 

  • Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 24:422–423

    Google Scholar 

  • Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 62:881–919

    Article  Google Scholar 

  • Gibson A, Nobel PS (1986) The Cactus Primer. Harvard University, USA

    Google Scholar 

  • Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA (2008) Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiol 28:395–404

    PubMed  Google Scholar 

  • González-Herrera R, Sánchez-Pinto I, Gamboa-Vargas J (2002) Groundwater flow modeling in the Yucatán karstic aquifer. México. Hydrogeol. J. 10:539–552

    Article  Google Scholar 

  • González-Iturbe JA, Olmsted I, Tun-Dzul F (2002) Tropical dry forest recovery after long term Henequen (Sisal, Agave fourcroydes Lem) plantation in northern Yucatan, Mexico. For Ecol Manag 167:67–82

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, London

    Google Scholar 

  • Herrera-Silveira JA (1995) Seasonal patterns and behavior of nutrients in a tropical coastal lagoon whit groundwater discharges. Int J Ecol Environ Sci 22:45–57

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change and water. IPCC Technical paper IV, Wembley

    Google Scholar 

  • Jackson PC, Meinzer FC, Bustamante M, Goldstein G, Franco AC, Rundel P, Caldas L, Igler E, Causin F (1999) Partitioning of soil water among tree species in a Brazilian cerrado ecosystem. Tree Physiol 19:717–724

    PubMed  Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical Methods in Geophysical Prospecting. Pergamon, UK

    Google Scholar 

  • Kushwaha CP, Singh KP (2005) Diversity of leaf phenology in a tropical deciduous forest in India. J Trop Ecol 21:47–56

    Article  Google Scholar 

  • Lundell CL (1934) Preliminary sketch of the phytography of the Yucatan peninsula. Contrib Amer Archaeol 12:257–355

    Google Scholar 

  • Meinzer FC (2003) Functional convergence in plants responses to the environment. Oecologia 134:1–11

    Article  PubMed  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forest. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Nepstad DC, Carvalho CR, Davidson EA, Jipp PG, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of the deep roots in the hydrological and carbon cycles of Amazonian forest and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Nilsen ET, Sharifi M, Rundel PW, Forseth IN, Ehleringer JR (1990) Water relations of stem succulent trees in north-central Baja California. Oecologia 82:299–303

    Article  Google Scholar 

  • Olivares E, Medina E (1992) Water and nutrient relations of woody perennials from tropical dry forests. J Veg Sci 3:383–92

    Article  Google Scholar 

  • Opler PA, Frankie GW, Baker HG (1980) Comparative phenological studies of tree let and shrub species in tropical wet, and dry forest in the lowlands if Costa Rica. J Ecol 68:167–188

    Article  Google Scholar 

  • Olsen O, Cole RV, Watanabe FS and Dean CA (1954) Estimation of available phosphorus in soil by extraction with sodium bicarbonate. U. S. Dept. Agr. Circ. USA. pp. 939–943

  • Orellana R (1999) Evaluación climática. In: García A, Cordova J (eds) Atlas de procesos territoriales de Yucatán. Universidad Autónoma de Yucatán, Mérida, pp 163–182

    Google Scholar 

  • Ortiz JJ (1994) Etnoflora Yucatanense: Polygonaceae, Universidad Autónoma de Yucatán, Mérida, Yucatán, México. 10:38 - 41

  • Pavón NP, Briones O (2001) Phenological patterns of nine perennial plants in an intertropical semi-arid Mexican scrub. J Arid Environ 49:265–277

    Article  Google Scholar 

  • Perry EC, Marin LE, McCain J, Velazquez G (1995) The Ring of cenotes (skinholes) northwest Yucatán, México: Its hydrogeologic characteristics and possible association whit the Chicxulub Impact Crater. Geology 23(1):17–20

    Article  Google Scholar 

  • Pearcy RW, Ehleringer J (1984) Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7:1–13

    Article  CAS  Google Scholar 

  • Porter-Bolland L (2003) La apicultura y el paisaje maya. Estudio sobre la fenología de floración de las especies melíferas y su relación con el ciclo apícola en La Montaña, Campeche, México. Mexican Studies / Estudios Mexicanos 19:303–330

    Article  Google Scholar 

  • Potvin C, Lechowics MJ, Tardif S (1990) The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71:1389–1400

    Article  Google Scholar 

  • Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ, Ruenes R (2006) Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in dry tropical climate. Plant Soil 287:187–197

    Article  CAS  Google Scholar 

  • Reich PB (1995) Phenology of tropical forest: patterns, causes, and consequences. Can J Bot 73:164–174

    Article  Google Scholar 

  • Reich PB, Borchert R (1982) Phenology and ecophysiology of the tropical tree, Tabebuia neochrysantha (Bignoniaceae). Ecology 63:294–299

    Article  Google Scholar 

  • Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74

    Article  Google Scholar 

  • Rivera G, Elliot S, Caldas LS, Nicolossi G, Coradin VTR, Brochert R (2002) Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445–456

    Article  Google Scholar 

  • Rzedowski J and Calderón G (1996) Flora de Veracruz: Burseraceae. Instituto de Ecología, Xalapa, Veracruz, México. 94:21 - 29

  • Sayer EJ, Newbery DM (2003) The role of tree size in the leafing phenology of a seasonally dry tropical forest in Belize, Central America. J Trop Ecol 19:539–548

    Article  Google Scholar 

  • Schulze ED, Mooney HA, Bullock SH, Mendoza A (1988) Water contents of wood of tropical deciduous forest species during the dry season. Bol Soc Bot Méx 48:113–118

    Google Scholar 

  • Singh KP, Kushwaha CP (2005a) Emerging paradigms of tree phenology in dry tropics. Curr Sci 89:964–975

    Google Scholar 

  • Singh KP, Kushwaha CP (2005b) Paradox of leaf phenology: Shorea robusta is a semi-evergreen species in tropical dry deciduous forest in India. Curr Sci 88:1820–1824

    Google Scholar 

  • Singh KP, Kushwaha CP (2006) Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. Ann Bot 97:265–276

    Article  CAS  PubMed  Google Scholar 

  • Standley PC and Williams LO (1967) Flora of Guatemala. Field Botany Chicago Natural History Museum. Chicago, USA 24(8):261

  • Telford WM, Geldart LP, Sheriff RE, Keys DA (1990) Applied geophysics 2ed. Cambridge University, Cambridge

    Google Scholar 

  • Téllez VO, Sousa M (1982) Imágenes de la flora quintanarroense. Centro de Investigaciones de Quintana Roo, Quintana Roo

    Google Scholar 

  • Thien L, Bradburn AS, Welden AL (1982) The woody vegetation of Dzibilchaltún. A maya archeological site in Northwest Yucatán, México. Middle Am Res Inst Occasional Pap 5:1–24

    Google Scholar 

  • Valencia MS, Vargas JH (1997) Método empírico para estimar la densidad básica en muestras pequeñas de madera. Madera y Bosques 3(1):81–87

    Google Scholar 

  • Vázquez-Yanes C, Batis AI, Alcocer MI, Gual M, Sánchez C (1999) Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. Reporte técnico del proyecto J084. CONABIO - Instituto de Ecología UNAM, México, p 311

    Google Scholar 

  • Ward SH (1990) Resistivity and induced polarization methods. In: Ward SH (ed) Geotechnical and Environmental Geophysics Vol. 1. Society of Exploration Geophysicists, USA, pp 147–190

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 34:29–38

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Gulberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1996) Biostatistical Analysis 3rd edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Zarucchi JL (2001) Apoplanesia: Apoplanesia paniculata. In: Stevens WD, Ulloa C, Pool A, Montiel OM (eds) Flora de Nicaragua: Angiospermas (Fabaceae - Oxalidaceae). Missouri Botanical Garden, USA, p 960

    Google Scholar 

Download references

Acknowledgements

We thank Claudia González, Elizabeth Osorio, Gustavo Vargas, José Luis Simá and Roberth Us-Santamaría for field assistance. We also thank Adrien Le Cossec for helpwith the geophysical techniques, Eduardo Balám for providing the environmental data, and Diana Trejo for advice in the archeological area of Dzibilchaltún National Park. Oscar Briones and three anonymous reviewers provided helpful comments on an earlier version of the manuscript. This research was financially supported by the grant Fondo Sectorial Comisión Nacional Forestal-Consejo Nacional de Ciencia y Tecnología 9765. M. Valdez-Hernández was the recipient of the fellowship Consejo Nacional de Ciencia y Tecnología 153017. This material is based upon work partially supported by the National Science Foundation under Grant No. 0516387. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirna Valdez-Hernández.

Additional information

Responsible Editor Rafael S. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdez-Hernández, M., Andrade, J.L., Jackson, P.C. et al. Phenology of five tree species of a tropical dry forest in Yucatan, Mexico: effects of environmental and physiological factors. Plant Soil 329, 155–171 (2010). https://doi.org/10.1007/s11104-009-0142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0142-7

Keywords

Navigation