Skip to main content

Advertisement

Log in

Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Increases in the concentrations of atmospheric greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) due to human activities are associated with global climate change. CO2 concentration in the atmosphere has increased by 33% (to 380 ppm) since 1750 ad, whilst CH4 concentration has increased by 75% (to 1,750 ppb), and as the global warming potential (GWP) of CH4 is 25 fold greater than CO2 it represents about 20% of the global warming effect. The purpose of this review is to: (a) address recent findings regarding biophysical factors governing production and consumption of CH4, (b) identify the current level of knowledge regarding the main sources and sinks of CH4 in Australia, and (c) identify CH4 mitigation options and their potential application in Australian ecosystems. Almost one-third of CH4 emissions are from natural sources such as wetlands and lake sediments, which is poorly documented in Australia. For Australia, the major anthropogenic sources of CH4 emissions include energy production from fossil fuels (~24%), enteric fermentation in the guts of ruminant animals (~59%), landfills, animal wastes and domestic sewage (~15%), and biomass burning (~5%), with minor contributions from manure management (1.7%), land use, land-use change and forestry (1.6%), and rice cultivation (0.2%). A significant sink exists for CH4 (~6%) in aerobic soils, including agricultural and forestry soils, and potentially large areas of arid soils, however, due to limited information available in Australia, it is not accounted for in the Australian National Greenhouse Gas Inventory. CH4 emission rates from submerged soils vary greatly, but mean values ≤10 mg m−2 h−1 are common. Landfill sites may emit CH4 at one to three orders of magnitude greater than submerged soils. CH4 consumption rates in non-flooded, aerobic agricultural, pastoral and forest soils also vary greatly, but mean values are restricted to ≤100 μg m−2 h−1, and generally greatest in forest soils and least in agricultural soils, and decrease from temperate to tropical regions. Mitigation options for soil CH4 production primarily relate to enhancing soil oxygen diffusion through water management, land use change, minimised compaction and soil fertility management. Improved management of animal manure could include biogas capture for energy production or arable composting as opposed to open stockpiling or pond storage. Balanced fertiliser use may increase soil CH4 uptake, reduce soil N2O emissions whilst improving nutrient and water use efficiency, with a positive net greenhouse gas (CO2-e) effect. Similarly, the conversion of agricultural land to pasture, and pastoral land to forestry should increase soil CH4 sink. Conservation of native forests and afforestation of degraded agricultural land would effectively mitigate CH4 emissions by maintaining and enhancing CH4 consumption in these soils, but also by reducing N2O emissions and increasing C sequestration. The overall impact of climate change on methanogenesis and methanotrophy is poorly understood in Australia, with a lack of data highlighting the need for long-term research and process understanding in this area. For policy addressing land-based greenhouse gas mitigation, all three major greenhouse gases (CO2, CH4 and N2O) should be monitored simultaneously, combined with improved understanding at process-level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For the scope of this review, we adopt the definition of a wetland as per Environment Australia (2001), based upon the Ramsar Convention under Article 1.1. “areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres”.

References

  • AGO (2007) National Greenhouse Gas Inventory 2005 Australian Greenhouse Office, Department of Environment and Heritage, Canberra, Australia

  • Allen DE, Dalal RC, Rennenberg H, Meyer RL, Reeves S, Schmidt S (2007) Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol Biochem 39:622–631

    CAS  Google Scholar 

  • Altor AE, Mitsch WJ (2006) Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecol Engin 28:224–234

    Google Scholar 

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Letters 126:215–220

    CAS  Google Scholar 

  • Ambus P, Andersen BL, Kemner M, Sørensen B, Wille J (2002) Natural carbon isotopes used to study methane consumption and production in soil. Isot Environ Health Stud 38:149–157

    CAS  Google Scholar 

  • Ambus P, Christensen S (1995) Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems. J Environ Qual 24:993–1001

    CAS  Google Scholar 

  • Ambus P, Robertson GP (2006) The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan. Biogeochem 79:315–337

    CAS  Google Scholar 

  • Arif SMA, Houwen F, Verstraete W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fert Soils 21:95–102

    Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016

    PubMed  CAS  Google Scholar 

  • Australian Bureau of Statistics (2004) ABS Yearbook Australia: Agricultural Crops, Canberra, Australia

  • Awasthi KD, Sitaula BK, Singh BR, Bajracharya RM (2005) Fluxes of methane and carbon dioxide from soil under forest, grazing land, irrigated rice and rainfed field crops in a watershed of Nepal. Biol Fert Soils 41:163–172

    CAS  Google Scholar 

  • Babu JY, Nayak DR, Adhya TK (2006) Potassium application reduces methane emission from a flooded field planted to rice. Biol Fert Soils 42:532–541

    Google Scholar 

  • Ball BC, Dobbie KE, Parker JP, Smith KA (1997) The influence of gas transport and porosity on methane oxidation in soils. J Geophys Res D, Atmospheres 102:23301–23308

    CAS  Google Scholar 

  • Ball BC, Scott A, Parker JP (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res 53:29–39

    Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    CAS  Google Scholar 

  • Basiliko N, Yavitt JB (2001) Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands. Biogeochem 52:133–153

    CAS  Google Scholar 

  • Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes, A comparison of methods. Environ Sci Tech 36:3354–3361

    CAS  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, \({\text{NH}}^{ + }_{4} \), and CO oxidation by methanotrophs and nitrifiers. Microbiol Reviews 53:68–84

    CAS  Google Scholar 

  • Beeton RJS, Buckley KI, Jones GJ, Morgan D, Reichelt RE, Dennis T (2006 Australian State of the Environment Committee) 2006 Australia State of the Environment 2006, Independent report to the Australian Government Minister for the Environment and Heritage, Department of the Environment and Heritage, Canberra, Australia

  • Benstead J, King GM (2001) The effect of soil acidification on atmospheric methane uptake by a Maine forest soil. FEMS Microbiol Ecol 34:207–212

    PubMed  CAS  Google Scholar 

  • Bergamaschi P, Harris GW (1995) Measurements of stable carbon isotope ratios (13CH4/12CH4, 12CH3D/12CH4) in landfill methane using tunable diode laser absorption spectrometer. Global Biogeoch Cycles 9:439–447

    Google Scholar 

  • Bignell DE, Eggleton P, Nunes L, Thomas KL (1997) Termites as mediators of carbon fluxes in tropical forests: Budgets for carbon dioxide and methane emissions. In: Watt AD, Stork NE (eds) Forest and Insects. Chapman and Hall, London, pp 109–134

    Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    CAS  PubMed  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    PubMed  CAS  Google Scholar 

  • Boeckx P, Van Cleemput O, Meyer T (1998) The influence of land use and pesticides on methane oxidation in some Belgian soils. Soils and climate change. Biol Fert Soils 27:293–298

    CAS  Google Scholar 

  • Boeckx P, Van Cleemput O, Villaralvo I (1997) Methane oxidation in soils with different textures and land use. Nutr Cycl Agroecosys 49:91–95

    CAS  Google Scholar 

  • Bollag JM, Czlonkowski ST (1973) Inhibition of methane formation in soil by various nitrogen-containing compounds. Soil Biol Biochem 5:673–678

    CAS  Google Scholar 

  • Boon PI, Lee K (1997) Methane oxidation in sediments of a floodplain wetland in south-eastern Australia. Letters Appl Microbiol 25:138–142

    CAS  Google Scholar 

  • Boon PI, Mitchell A (1995) Methanogenesis in the sediments of an Australian freshwater wetland, Comparison with aerobic decay, and factors controlling methanogenesis. FEMS Microbiol Ecol 18:175–190

    CAS  Google Scholar 

  • Boon PI, Mitchell A, Lee A (1997) Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiol 357:73–87

    CAS  Google Scholar 

  • Borken W, Brumme R, Xu YJ (2000) Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest. J Geophys Res D, Atmospheres 105:7079–7088

    CAS  Google Scholar 

  • Borken W, Davidson EA, Savage K, Sundquist ET, Steudler P (2006) Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biol Biochem 38:1388–1395

    CAS  Google Scholar 

  • Borken W, Xu YJ, Beese F, Xu YJ (2003) Conversion of hardwood forests to spruce and pine plantations strongly reduced soil methane sink in Germany. Global Change Biol 9:956–966

    Google Scholar 

  • Bossio DA, Horwath WR, Mutters RG, Van Kessel C (1999) Methane pool and flux dynamics in a rice field following straw incorporation. Soil Biol Biochem 31:1313–1322

    CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van Der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    PubMed  CAS  Google Scholar 

  • Bowden RD, Rullo G, Stevens GR, Steudler PA (2000) Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperate deciduous forest. J Environ Qual 29:268–276

    CAS  Google Scholar 

  • Bradford MA, Ineson P, Wookey PA, Lappin-Scott HM (2000) Soil CH4 oxidation, response to forest clearcutting and thinning. Soil Biol Biochem 32:1035–1038

    CAS  Google Scholar 

  • Bradford MA, Ineson P, Wookey PA, Lappin-Scott HM (2001a) Role of CH4 oxidation, production and transport in forest soil CH4 flux. Soil Biol Biochem 33:1625–1631

    CAS  Google Scholar 

  • Bradford MA, Wookey PA, Ineson P, Lappin-Scott HM (2001b) Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil. Soil Biol Biochem 33:93–102

    CAS  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099

    CAS  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fert Soils 17:263–268

    CAS  Google Scholar 

  • Bronson KF, Singh U, Neue HU, Abao EB Jr (1997) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil, II. Fallow period emissions. Soil Sci Soc Am J 61:988–993

    Article  CAS  Google Scholar 

  • Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405:175–178

    PubMed  CAS  Google Scholar 

  • Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004) Temporal variations of fluxes of NO, NO2, N2O, CO 2, and CH4 in a tropical rain forest ecosystem. Glob Biogeochem Cycles 18:GB, 3012 1-11

  • Butterbach-Bahl K, Papen H (2002) Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of an N-saturated spruce and beech forest ecosystem in Germany. Plant Soil 240:77–90

    CAS  Google Scholar 

  • Bykova S, Boeckx P, Kravchenko I, Galchenko V, Van Cleemput O (2007) Response of CH4 oxidation and methanotrophic diversity to \({\text{NH}}^{ + }_{4} \) and CH4 mixing ratios. Biol Fert Soils 43:341–348

    Google Scholar 

  • Cai Z, Mosier AR (2000) Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32:1537–1545

    CAS  Google Scholar 

  • Castaldi S, Costantini M, Cenciarelli P, Ciccioli P, Valentini R (2007) The methane sink associated to soils of natural and agricultural ecosystems in Italy. Chemosphere 66:723–729

    PubMed  CAS  Google Scholar 

  • Castaldi S, De Pascale RA, Grace J, Nikonova N, Montes R, San José J (2004) Nitrous oxide and methane fluxes from soils of the Orinoco savanna under different land uses. Global Change Biol 10:1947–1960

    Google Scholar 

  • Castaldi S, Ermice A, Strumia S (2006) Fluxes of N2O and CH4 from soils of savannas and seasonally-dry ecosystems. J. Biogeography 33:401–415

    Google Scholar 

  • Castaldi S, Fierro A (2005) Soil-atmosphere methane exchange in undisturbed and burned Mediterranean shrubland of southern Italy. Ecosys 8:182–190

    CAS  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Glob Biogeochem Cycles 9:1–10

    CAS  Google Scholar 

  • Chaban B, Ng SYM, Jarrell KF (2006) Archaeal habitats – from the extreme to the ordinary. Can J Microbiol 52:73–116

    PubMed  CAS  Google Scholar 

  • Chan ASK, Parkin TB (2001a) Effect of land use on methane flux from soil. J Environ Qual 30:786–797

    PubMed  CAS  Google Scholar 

  • Chan ASK, Parkin TB (2001b) Methane oxidation and production activity in soils from natural and agricultural ecosystems. J Environ Qual 30:1896–1903

    PubMed  CAS  Google Scholar 

  • Chan ASK, Prueger JH, Parkin TB (1998) Comparison of closed-chamber and Bowen-ratio methods for determining methane flux from peatland surfaces. J Environ Qual 27:232–239

    CAS  Google Scholar 

  • Chan ASK, Steudler PA, Bowden RD, Gulledge J, Cavanaugh CM (2005) Consequences of nitrogen fertilization on soil methane consumption in a productive temperate deciduous forest. Biol Fert Soils 41:182–189

    CAS  Google Scholar 

  • Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK (1997) Methane emission from rice, stable isotopes, diurnal variations, and CO2 exchange. Glob Biogeochem Cycles 11:15–27

    CAS  Google Scholar 

  • Cheng W, Yagi K, Sakai H, Kobayashi K (2006) Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil, An experiment in controlled-environment chambers. Biogeochem 77:351–373

    CAS  Google Scholar 

  • Chin KJ, Conrad R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18:85–102

    CAS  Google Scholar 

  • Chin K, Lukow T, Conrad R (1999) Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol 65:2341–2349

    PubMed  CAS  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycles 2:299–327

    CAS  Google Scholar 

  • Coleman DD, Risatti JB, Schoell M (1981) Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim Cosmochim Acta 45:1033–1037

    CAS  Google Scholar 

  • Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures, a review and a proposal. Org Geochem 36:739–752

    CAS  Google Scholar 

  • Cook SA, Shiemke AK (1996) Evidence that copper is a required cofactor for the membrane-bound form of methane monooxygenase. J Inorg Biochem 63:273–284

    CAS  Google Scholar 

  • Corton TM, Bajita JB, Grospe FS, Pamplona RR, Asis CA Jr, Wassmann R, Lantin RS, Buendia L V (2000) Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr Cycl Agroecosyst 58:37–53

    CAS  Google Scholar 

  • Coventry RJ, Holt JA, Sinclair DF (1988) Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Aust J Soil Res 26:375–390

    Google Scholar 

  • Cui J, Li C, Sun G, Trettin C (2005) Linkage of MIKE SHE to Wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation. Biogeochem 72:147–167

    Google Scholar 

  • Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options, a review. Aust J Soil Res 41:165–195

    CAS  Google Scholar 

  • Dale AW, Regnier P, Van Cappellen P (2006) Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments, a theoretical analysis. Am J Sci 306:246–294

    Article  CAS  Google Scholar 

  • Del Grosso SJ, Mosier AR, Parton WJ, Ojima DS (2005) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 83:9–24

    Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Borken W, Brumme R, Butterbach-Bahl K, Crill PM, Dobbie K, Smith KA (2000) General CH4 oxidation in natural and managed systems. Glob Biogeochem Cycles 14:999–1019

    CAS  Google Scholar 

  • Denier Van Der Gon HAC, Neue HU (1995) Methane emission from a wetland rice field as affected by salinity. Plant Soil 170:307–313

    CAS  Google Scholar 

  • Denmead OT (1983) Micrometeorological methods for measuring gaseous losses of nitrogen in the field. In: Freney JR, Simpson JR (eds) Gaseaous loss of nitrogen from plant-soil systems. Martinus Nijhoff Publishers, The Hague, pp 133–157

    Google Scholar 

  • Denmead OT (2007) Approaches to measuring fluxes of trace gases between landscapes and atmosphere. Plant Soil this special issue (under review)

  • Denmead OT, Harper LA, Freney JR, Griffith DWT, Leuning R, Sharpe RR (1998) A mass balance method for non-intrusive measurements of surface-air trace gas exchange. Atmos Environ 32:3679–3688

    CAS  Google Scholar 

  • de Visscher A, Schippers M, Van Cleemput O (2001) Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors. Biol Fert Soils 33:231–237

    Google Scholar 

  • Devol AH, Richey JE, Forsberg BR, Martinelli LA (1990) Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. J Geophys Res 95:16417–16426

    CAS  Google Scholar 

  • Dobbie KE, Smith KA, Prieme A, Christensen S, Degorska A, Orlanski P (1996) Effect of land use on the rate of methane uptake by surface soils in northern Europe. Atmos Environ 30:1005–1011

    CAS  Google Scholar 

  • Donohue R, Hill MJ, Holloway J, Houlder P, Leslie R, Smith J, Thackway R (2005) Australia’s rangelands: an analysis of natural resources, patterns of use and community assets. Bureau of Rural Sciences, Australian Government, Canberra, Australia

    Google Scholar 

  • Dorr H, Katruff L, Levin I (1993) Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26:697–713

    Google Scholar 

  • Dueck TA, de VIsser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesnek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants, a 13C labelling apporach. New Phytol 175:29–35

    PubMed  CAS  Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils, response to temperature and pH. Soil Biol Biochem 25:321–326

    CAS  Google Scholar 

  • Dunfield PF, Topp E, Archambault C, Knowles R (1995) Effect of nitrogen fertilizers and moisture content on CH4 and N2O fluxes in a humisol, Measurements in the field and intact soil cores. Biogeochem 29:199–222

    CAS  Google Scholar 

  • Environment Australia (2001) A directory of important wetlands in Australia, 3rd edn. Environment Australia, Canberra, Australia

    Google Scholar 

  • Fernandes SAP, Bernoux M, Cerri CC, Feigl BJ, Piccolo MC (2002) Seasonal variation of soil chemical properties and CO2 and CH4 fluxes in unfertilized and P-fertilized pastures in an Ultisol of the Brazilian Amazon. Geoderma 107:227–241

    CAS  Google Scholar 

  • Fest B, Livesley SJ, Drösler M, Butterbach-Bahl K, Leuning R, Arndt S (2007) Spatial and temporal variation of soil based greenhouse gas emissions in a cool temperate Eucalyptus forest in SE Australia. In Non-CO2 Greenhouse Gas Fluxes in Australian-New Zealand Landscapes, Research Forum, 15–16 May 2007, Melbourne, Victoria, Australia

  • Flessa H, Wild U, Klemisch M, Pfadenhauer J (1998) Nitrous oxide and methane fluxes from organic soils under agriculture. Eur J Soil Sci 49:327–335

    CAS  Google Scholar 

  • Ford PW, Boon PI, Lee K (2002) Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485:97–110

    CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Bernsten T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schutz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 129–234

    Google Scholar 

  • Fowler D (1999) Experimental designs appropriate for flux determination in terrestrial and aquatic ecosystems. In: Bouwman AF (ed) Approaches to scaling a trace gas fluxes in ecosystems. Elsevier, Amsterdam, pp 101–121

    Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil, ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430

    CAS  Google Scholar 

  • Galbally IE, Fraser PJ, Meyer CP, Griffith DWT (1992) Biosphere-atmosphere exchange of trace gases over Australia. In: Gifford RM, Barson MM (eds) Australia’s renewable resources, sustainability and global change. Commonwealth Government Printer, Canberra, pp 117–149

    Google Scholar 

  • Grant RF (1998) Simulation of methanogenesis in the mathematical model ecosys. Soil Biol Biochem 30:883–896

    CAS  Google Scholar 

  • Grant RF (1999) Simulation of methanotrophy in the mathematical model ecosys. Soil Biol Biochem 31:287–297

    CAS  Google Scholar 

  • Greenway M (2005) The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecol Engineer 25:501–509

    Google Scholar 

  • Gregorich EG, Rochette P, Hopkins DW, McKim UF, St-Georges P (2006) Tillage-induced environmental conditions in soil and substrate limitation determine biogenic gas production. Soil Biol Biochem 38:2614–2628

    CAS  Google Scholar 

  • Griffith DWT, Leuning R, Denmead OT, Jamie IM (2002) Air-land exchanges of CO2, CH4 and N2O measured by FTIR spectrometry and micrometeorological techniques. Atmos Environ 36:1833–1842

    CAS  Google Scholar 

  • Gulledge J, Schimel JP (1998) Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH4 inhibition. Appl Environ Microbiol 64:4291–4298

    PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Reviews 60:439–471

    CAS  Google Scholar 

  • Hao WM, Scharffe D, Crutzen PJ, Sanhueza E (1988) Production of N2O, CH4, and CO2 from soils in the tropical savanna during the dry season. J Atmos Chem 7:93–105

    CAS  Google Scholar 

  • Happell JD, Chanton JP, Showers WS (1994) The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochim Cosmochim Acta 58:4377–4388

    CAS  Google Scholar 

  • Harper LA, Denmead OT, Freney JR, Byers FM (1999) Direct measurements of methane emissions from grazing and feedlot cattle. J Animal Sci 77:1392–1401

    CAS  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Letters 132:203–208

    CAS  Google Scholar 

  • Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterisation of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ. Microbiol 65:3312–3318

    PubMed  CAS  Google Scholar 

  • Holter P (1997) Methane emissions from Danish cattle dung pats in the field. Soil Biol Biochem 29:31–37

    CAS  Google Scholar 

  • Hornibrook ERC, Longstaffe FJ, Fyfe WS (1997) Spatial distribution of microbial methane production pathways in temperate zone wetland soils, stable carbon and hydrogen isotope evidence. Geochim Cosmochim Acta 61:745–753

    CAS  Google Scholar 

  • Horz HP, Rich V, Avrahami S, Bohannan BJM (2005) Methane-oxidizing bacteria in a California upland grassland soil, diversity and response to simulated global change. Appl Environ Microbiol 71:2642–2652

    PubMed  CAS  Google Scholar 

  • Hou AX, Chen GX, Wang ZP, Van Cleemput O, Patrick WH Jr (2000) Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64:2180–2186

    Article  CAS  Google Scholar 

  • Howden SM, Reyenga PJ (1999) Methane emissions from Australian livestock, implications of the Kyoto protocol. Aus J Agric Res 50:1285–1291

    Google Scholar 

  • Howden SM, White DH, Bowman PJ (1996) Managing sheep grazing systems in southern Australia to minimise greenhouse gas emissions, adaptation of an existing simulation model. Ecol Modelling 86:201–206

    CAS  Google Scholar 

  • Hudgens DE, Yavitt JB (1997) Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca, New York. Ecosci 4:214–222

    Google Scholar 

  • Hurst DF, Griffith DWT, Cook GD (1994) Trace gas emissions from biomass burning in tropical Australian savannas. J Geophys Res 99(D8):16441–16456

    CAS  Google Scholar 

  • Husin YA, Murdiyarso D, Khalil MAK, Rasmussen RA, Shearer MJ, Sabiham S, Sunar A, Adijuwana H (1995) Methane flux from Indonesian wetland rice, the effects of water management and rice variety. Chemosphere 31:3153–3180

    CAS  Google Scholar 

  • Hutsch BW (1998a) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biol Fert Soils 27:284–292

    CAS  Google Scholar 

  • Hutsch BW (1998b) Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol Fert Soils 28:27–35

    CAS  Google Scholar 

  • Inubushi K, Otake S, Furukawa Y, Shibasaki N, Ali M, Itang AM, Tsuruta H (2005) Factors influencing methane emission from peat soils, comparison of tropical and temperate wetlands. Nutr Cycl Agroecosys 71:93–99

    CAS  Google Scholar 

  • IPCC (2006) 2006 IPCC guidelines for National Greenhouse Inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) National greenhouse inventories programme. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan

    Google Scholar 

  • IPCC (2007) Climate change 2007, the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, p 21

    Google Scholar 

  • IPCC-SRES (2006) Scenario data for the atmospheric environment. The IPCC Data Distribution Centre. http://www.ipcc-data.org/sres/ddc_sres_emissions.html

  • Ishizuka S, Iswandi A, Nakajima Y, Yonemura S, Sudo S, Tsuruta H, Murdiyarso D (2005) The variation of greenhouse gas emissions from soils of various land-use/cover types in Jambi province, Indonesia. Nutr Cycl Agroecosys 71:17–32

    CAS  Google Scholar 

  • Jacinthe PA, Lal R (2005) Labile carbon and methane uptake as affected by tillage intensity in a Mollisol. Soil Tillage Res 80:35–45

    Google Scholar 

  • Jacinthe PA, Lal R (2006) Methane oxidation potential of reclaimed grassland soils as affected by management. Soil Sci 171:772–783

    CAS  Google Scholar 

  • Jackel U, Thummes K, Kampfer P (2005) Thermophilic methane production and oxidation in compost. FEMS Microbiol Ecol 52:175–184

    PubMed  Google Scholar 

  • Jang I, Lee S, Hong JH, Kang H (2006) Methane oxidation rates in forest soils and their controlling variables, a review and a case study in Korea. Ecol Res 21:849–854

    CAS  Google Scholar 

  • Janzen HH, Angers DA, Boehm M, Bolinder M, Desjardins RL, Dyer JA, Ellert BH, Gibb DJ, Gregorich EG, Helgason BL, Lemke R, Massé D, McGinn SM, McAllister TA, Newlands N, Pattey E, Rochette P, Smith W, VandenBygaart AJ, Wang H (2005) A proposed approach to estimate and reduce net greenhouse gas emissions from whole farms. Can J Soil Sci 86:401–418

    Google Scholar 

  • Jarrell KF, Kalmokoff ML (1988) Nutritional requirements of the methanogenic archeabacteria. Can J Microbiol 34:557–576

    CAS  Google Scholar 

  • Jarvis SC, Lovell RD, Panayides R (1995) Patterns of methane emission from excreta of grazing animals. Soil Biol Biochem 27:1581–1588

    CAS  Google Scholar 

  • Kammann C, Grünhage L, Jäger HJ (2001) A new sampling technique to monitor concentrations of CH4, N2O and CO2 in air at well-defined depths in soils with varied water potential. Eur J Soil Sci 52:297–303

    CAS  Google Scholar 

  • Kang H, Freeman C (2002) The influence of hydrochemistry on methane emissions from two contrasting northern wetlands. Water Air Soil Pollut 141:263–272

    CAS  Google Scholar 

  • Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    PubMed  CAS  Google Scholar 

  • Keerthisinghe DG, Freney JR, Mosier AR (1993) Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice. Biol Fert Soils 16:71–75

    Google Scholar 

  • Keller M, Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob Biogeochem Cycles 8:399–409

    CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    PubMed  CAS  Google Scholar 

  • Kessavalou A, Mosier AR, Doran JW, Drijber RA, Lyon DJ, Heinemeyer O (1998) Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management. J Environ Qual 27:1094–1104

    CAS  Google Scholar 

  • Khalil MI, Baggs EM (2005) CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem 37:1785–1794

    CAS  Google Scholar 

  • Khalil MAK, Rasmussen RA, French JR, Holt JA (1990) The influence of termites on atmospheric trace gases, CH4, CO2, CHCl3, N2O, CO, H2 and light hydrocarbons. J Geophys Res 95(D4):3619–3634

    Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Current Microbiol 35:257–261

    CAS  Google Scholar 

  • Kiese R, Hewett B, Graham A, Butterbach-Bahl K (2003) Seasonal variability of N2O-emissions and CH4-uptake from/by a tropical rainforest soil of Queensland, Australia. Glob Biogeochem Cycles 17:1043 (12–1)

    Google Scholar 

  • King GM, Adamsen APS (1992) Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Appl Environ Microbiol 58:2758–2763

    PubMed  CAS  Google Scholar 

  • King SL, Quay PD, Lansdown JM (1989) The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations. J Geophys Res 94(D15):18273–18277

    Google Scholar 

  • Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Functional Plant Biol 33:521–530

    CAS  Google Scholar 

  • Knief C, Kolb S, Bodelier PLE, Lipski A, Dunfield PF (2006) The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ Microbiol 8:321–333

    PubMed  CAS  Google Scholar 

  • Knief C, Vanitchung S, Harvey NW, Conrad R, Dunfield PF, Chidthaisong A (2005) Diversity of methanotrophic bacteria in tropical upland soils under different land uses. Appl Environ Microbiol 71:3826–3831

    PubMed  CAS  Google Scholar 

  • Kormann R, Müller H, Werle P (2001) Eddy flux measurements of methane over the fen ‘Murnauer Moos’, 11°11′E, 47°39′N, using a fast tunable diode laser spectrometer. Atmos Environ 35:2533–2544

    CAS  Google Scholar 

  • Kravchenko IK, Boeckx P, Galchenko V, Van Cleemput O (2002) Short- and medium-term effects of \({\text{NH}}^{ + }_{4} \) on CH4 and N2O fluxes in arable soils with a different texture. Soil Biol Biochem 34:669–678

    CAS  Google Scholar 

  • Kreuzwieser J, Buchholz J, Rennenberg H (2003) Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biol 5:423–431

    CAS  Google Scholar 

  • Kruger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Global Change Biol 7:49–63

    Google Scholar 

  • Kruger M, Frenzel P, Kemnitz D, Conrad R (2005) Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51:323–331

    PubMed  Google Scholar 

  • Kumaraswamy S, Ramakrishnan B, Sethunathan N (2001) Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. J Environ Qual 30:2195–2201

    PubMed  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils, a review. Eur J Soil Biol 37:25–50

    Google Scholar 

  • Leuning R, Denmead OT, Miyata A, Kim J (2000) Source/sink distributions of heat, water vapour, carbon dioxide and methane in a rice canopy estimated using Lagrangian dispersion analysis. Agric Forest Meteorol 104:233–249

    Google Scholar 

  • Li CS, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems, sensitivity and upscaling. Glob Biogeochem Cycl 18:GB1043, 1–19

    Google Scholar 

  • Li CS, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in china over the next twenty years. J Environ Qual 35:1554–1565

    PubMed  CAS  Google Scholar 

  • Lindau CW, Wickersham P, DeLaune RD, Collins JW, Bollick PK, Scott LM, Lambremont EN (1998) Methane and nitrous oxide evolution and 15N and 226Ra uptake as affected by application of gypsum and phosphogypsum to Louisiana rice. Agric Ecosys Environ 68:165–173

    CAS  Google Scholar 

  • Liu XJ, Mosier AR, Halvorson AD, Zhang FS (2006) The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil 280:177–188

    CAS  Google Scholar 

  • Livesley SJ, Arndt SK, Weston CJ, Kiese R, Butterbach-Bahl K (2007b) Trace gas exchange in a fertilised and unfertilised Eucalyptus globulus plantation. In: Forest soils and ecosystem health – conference proceeding, August 2007, Noosa, Queensland, Australia

  • Livesley SJ, Arndt SK, Weston CJ, Kiese R, Butterbach-Bahl K (2007c) Trace gas flux and the influence of soil water, temperature and nutrient status in fertilized and unfertilized sheep grazed pasture. Plant Soil, This special issue (under review)

  • Livesley SJ, Butterbach-Bahl K, Kiese R, Weston CJ, Arndt SK (2007a) Nitrous oxide and methane emissions under land-use change from grazed pasture to Eucalyptus globulus and Pinus radiata plantations in Australia. Non-CO2 greenhouse gas fluxes in Australian–New Zealand landscapes, Research Forum, 15–16 May 2007, Melbourne, Victoria, Australia

  • MacDonald JA, Eggleton P, Bignell DE, Forzi F, Fowler D (1998) Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo Forest Reserve, Cameroon. Global Change Biol 4:409–418

    Google Scholar 

  • MacDonald JA, Jeeva D, Eggleton P, Davies R, Bignell DE, Fowler D, Lawton J, Maryati M (1999) The effect of termite biomass and anthropogenic disturbance on the CH4 budgets of tropical forests in Cameroon and Borneo. Global Change Biol 5:869–879

    Google Scholar 

  • Maljanen M, Jokinen H, Saari A, Strömmer R, Martikainen PJ (2006) Methane and nitrous oxide fluxes, and carbon dioxide production in boreal forest soil fertilized with wood ash and nitrogen. Soil Use Manage 22:151–157

    Google Scholar 

  • Mander U, Teiter S, Augustin J (2005) Emission of greenhouse gases from constructed wetlands for wastewater treatment and from riparian buffer zones. Water Sci Tech 52:167–176

    CAS  Google Scholar 

  • Marani L, Alvala PC (2007) Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmos Environ 41:1627–1633

    CAS  Google Scholar 

  • McCrabb GJ, Hunter RA (1999) Prediction of methane emissions from beef cattle in tropical production systems. Aus J Agric Res 50:1335–1339

    Google Scholar 

  • McLain JET, Kepler TB, Ahmann DM (2002) Belowground factors mediating changes in methane consumption in a forest soil under elevated CO2. Glob Biogeochem Cycles 16:23–1–24-14

    Google Scholar 

  • McLain JET, Martens DA (2004) Studies of methane fluxes reveal that desert soils can mitigate global change. In: Eskew L (eds) Proceedings, 5th Conference on Research and Resource Management in the Southwestern Deserts. Connecting Mountain Islands and Desert Seas, Tucson, AZ. 11–15 May 2004. United States Forest Service, Tucson, AZ

  • McNamara NP, Chamberlain PM, Piearce TG, Sleep D, Black HIJ, Reay DS, Ineson P (2006) Impact of water table depth on forest soil methane turnover in laboratory soil cores deduced from natural abundance and tracer 13C stable isotope experiments. Isot Environ Health Stud 42:379–390

    CAS  Google Scholar 

  • Meyer CP, Galbally IE, Griffith DWT, Weeks IA, Wang YP (1998) Trace gas exchange between soil and atmosphere in southern NSW using flux chamber measurement techniques. Consultancy report 98-62. Attachment 1. Final Report to National Greenhouse Gas Inventory Committee, CSIRO Land and Water, Canberra, Act, pp 1–21

  • Meyer CP, Galbally IE, Wang Y, Weeks IA, Jamie I, Griffith DWT (2001) Two automatic chambers techniques for measuring soil–atmosphere exchanges of trace gases and results of their use in the OASIS field experiment. CSIRO Atmospheric Research Technical paper No. 51. CSIRO, Aspendale, Vic. Australia, pp 1–33

  • Meyer CP, Galbally IE, Wang YP, Weeks IA, Tolhurst KG, Tomkins IB (1997) The enhanced emission of greenhouse gases from soil following prescribed burning in a southern eucalyptus forest. Final Report to the National Greenhouse Gas Inventory Committee, CSIRO, Division of Atmospheric Research, Aspendale, Victoria, pp 1–66

  • Minoda T, Kimura M, Wada E (1996) Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J Geophys Res D, Atmospheres 101:21091–21097

    CAS  Google Scholar 

  • Miyajima T, Wada E, Hanba YT, Vijarnsorn P (1997) Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim Cosmochim Acta 61:3739–3751

    CAS  Google Scholar 

  • Mohanty SR, Bharati K, Moorthy BTS, Ramakrishnan B, Rao VR, Sethunathan N, Adhya TK (2001) Effect of the herbicide butachlor on methane emission and ebullition flux from a direct-seeded flooded rice field. Biol Fert Soils 33:175–180

    CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354

    PubMed  CAS  Google Scholar 

  • Mosher BW, Czpiel PM, Hariss RC, Shorter JH, Kolb CE, McManus JB, Allwine E, Lamb BK (1999) Methane emissions at nine landfill sites in the northeastern United States. Environ Sci Tech 33:2088–2094

    CAS  Google Scholar 

  • Mosier AR, Delgado JA (1997) Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere 35:2059–2082

    CAS  Google Scholar 

  • Mosier AR, Delgado JA, Keller M (1998) Methane and nitrous oxide fluxes in an acid Oxisol in western Puerto Rico, effects of tillage, liming and fertilization. Soil Biol Biochem 30:2087–2098

    CAS  Google Scholar 

  • Mosier AR, Morgan JA, King JY, LeCain D, Milchunas DG (2002) Soil-atmosphere exchange of CH4, CO2, NOx, and N2O in the Colorado shortgrass steppe under elevated CO2. Plant Soil 240:201–211

    CAS  Google Scholar 

  • Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, Delgado JA (1996) CH4 and N2O fluxes in the Colorado shortgrass steppe, 1. Impact of landscape and nitrogen addition. Glob Biogeochem Cycl 10:387–399

    CAS  Google Scholar 

  • Mosier A, Schimel D, Valentine D, Bronson K, Parton W (1991) Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350:330–332

    CAS  Google Scholar 

  • Mosier A, Wassmann R, Verchot L, King J, Palm C (2004) Methane and nitrogen oxide fluxes in tropical agricultural soils, sources, sinks and mechanisms. Environ Develop Sus 6:1–49

    Google Scholar 

  • Myronova N, Kitmitto A, Collins R, Miyaji A, Dalton H (2006) Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Biochem 45:11905–11914

    CAS  Google Scholar 

  • Nakagawa F, Yoshida N, Sugimoto A, Wada E, Yoshioka T, Ueda S, Vijarnsorn P (2002) Stable isotope and radiocarbon compositions of methane emitted from tropical rice paddies and swamps in Southern Thailand. Biogeochem 61:1–19

    CAS  Google Scholar 

  • Naser HM, Nagata O, Tamura S, Hatano R (2007) Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Jap. Soil Sci Plant Nutr 53:95–101

    CAS  Google Scholar 

  • National Land and Water Resources Audit (2001) Land use change, productivity and diversification. Final Report of theme 5.1 to the National Land and Water Resources Audit. Bureau of Rural Sciences, Department of Agriculture, Fisheries and Forestry – Australia, Commonwealth of Australia, Canberra, Australia

  • Nouchi I, Yonemura S (2005) CO2, CH4 and N2O fluxes from soybean and barley double-cropping in relation to tillage in Japan. Phyton – Ann Rei Bot 45:327–338

    CAS  Google Scholar 

  • Nugroho SG, Lumbanraja J, Suprapto H, Sunyoto AWS, Haraguchi H, Kimura M (1996) Three-year measurement of methane emission from an Indonesian paddy field. Plant Soil 181:287–293

    CAS  Google Scholar 

  • Olivier JGJ, Van Aardenne JA, Dentener FJ, Pagliari V, Laurens N, Ganzeveld LN, Peters JAHW (2005) Recent trends in global greenhouse emissions, regional trends 1970–2000 and spatial distribution of key sources in 2000. Environ Sci 2:81–99

    Google Scholar 

  • Otter LB, Scholes MC (2000) Methane sources and sinks in a periodically flooded South African savanna. Global Biogeochem Cycl 14:97–111

    CAS  Google Scholar 

  • Palm CA, Alegre JC, Arevalo L, Mutuo PK, Mosier AR, Coe R (2002) Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Glob Biogeochem Cycles 16:21–1

    Google Scholar 

  • Papen H, Daum M, Steinkamp R, Butterbach-Bahl K (2001) N2O- and CH4- fluxes from soils of a N-limited and N-fertilized spruce forest ecosystem of the temperate zone. J Appl Bot 75:159–163

    Google Scholar 

  • Park JR, Moon S, Ahn YM, Kim JY, Nam K (2005) Determination of environmental factors influencing methane oxidation in a sandy landfill cover soil. Environ Tech 26:93–102

    CAS  Google Scholar 

  • Pathak H, Prasad S, Bhatia A, Singh S, Kumar S, Singh J, Jain MC (2003) Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide application. Agric Ecosys Environ 97:309–316

    CAS  Google Scholar 

  • Phillips RL, Whalen SC, Schlesinger WH (2001) Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Global Change Biol 7:557–563

    Google Scholar 

  • Powlson DS, Goulding KWT, Willison TW, Webster CP, Hütsch BW (1997) The effect of agriculture on methane oxidation in soil. Nutr Cycl Agroecosys 49:59–70

    CAS  Google Scholar 

  • Price SJ, Kelliher FM, Sherlock RR, Tate KR, Condron LM (2004) Environmental and chemical factors regulating methane oxidation in a New Zealand forest soil. Aust J Soil Res 42:767–776

    CAS  Google Scholar 

  • Price SJ, Sherlock RR, Kelliher FM, McSeveny TM, Tate KR, Condron LM (2003) Pristine New Zealand forest soil is a strong methane sink. Global Change Biol 10:16–26

    Google Scholar 

  • Prieme A, Christensen S (1999) Methane uptake by a selection of soils in Ghana with different land use. J Geophys Res D, Atmospheres 104(D19):23617–23622

    CAS  Google Scholar 

  • Prieme A, Christensen S, Dobbie KE, Smith KA (1997) Slow increase in rate of methane oxidation in soils with time following land use change from arable agriculture to woodland. Soil Biol Biochem 29:1269–1273

    CAS  Google Scholar 

  • Prieme A, Ekelund F (2001) Five pesticides decreased oxidation of atmospheric methane in a forest soil. Soil Biol Biochem 33:831–835

    CAS  Google Scholar 

  • Purvaja R, Ramesh R (2001) Natural and anthropogenic methane emission from coastal wetlands of South India. Environ Manage 27:547–557

    PubMed  CAS  Google Scholar 

  • Quay P, Stutsman J, Wilbur D, Snover A, Dlugokencky E, Brown T (1999) The isotopic composition of atmospheric methane. Glob Biogeochem Cycles 13:445–461

    CAS  Google Scholar 

  • Rask H, Schoenau J, Anderson D (2002) Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biol Biochem 34:435–443

    CAS  Google Scholar 

  • Rath AK, Ramakrishnan B, Sethunathan N (2002) Temperature dependence of methane production in tropical rice soils. Geomicrobiol J 19:581–592

    CAS  Google Scholar 

  • Reay DS, Nedwell DB, McNamara N, Ineson P (2005) Effect of tree species on methane and ammonium oxidation capacity in forest soils. Soil Biol Biochem 37:719–730

    CAS  Google Scholar 

  • Reeburgh WS (1980) Anaerobic methane oxidation, rate depth distribution in Skan Bay sediments. Earth and Planetary Sci Letters 47:345–352

    CAS  Google Scholar 

  • Regina K, Pihlatie M, Esala M, Alakukku L (2007) Methane fluxes on boreal arable soils. Agric Ecosys Environ 119:346–352

    CAS  Google Scholar 

  • Reid RS, Thornton PK, McCrabb GJ, Kruska RL, Atieno F, Jones PG (2004) Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics? Environ Develop Sus 6:91–109

    Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture, Contributions of individual gases to the radiative forcing of the atmosphere. Sci 289:1922–1925

    CAS  Google Scholar 

  • Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748

    Article  CAS  Google Scholar 

  • Roden EE, Wetzel RG (2003) Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microbial Ecol 45:252–258

    CAS  Google Scholar 

  • Rodhe L, Pell M, Yamulki S (2006) Nitrous oxide, methane and ammonia emissions following slurry spreading on grassland. Soil Use Manage 22:229–237

    Google Scholar 

  • Rosenkranz P, Brüggemann N, Papen H, Xu Z, Seufert G, Butterbach-Bahl K (2006) N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosci 3:121–133

    CAS  Google Scholar 

  • Roslev P, Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microbiol 65:4064–4070

    PubMed  CAS  Google Scholar 

  • Roslev P, Iversen N, Henriksen K (1997) Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl Environ Microbiol 63:874–880

    PubMed  CAS  Google Scholar 

  • Roslev P, King GM (1996) Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiol Ecol 19:105–115

    CAS  Google Scholar 

  • Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201:1–7

    CAS  Google Scholar 

  • Ruser R, Flessa H, Schilling R, Steindl H, Beese F (1998) Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci Soc Am J 62:1587–1595

    Article  CAS  Google Scholar 

  • Russell-Smith J, Edwards AC, Cook GD (2003) Reliability of biomass burning estimates from savanna fires, Biomass burning in northern Australia during the 1999 biomass burning and lightning experiment B field campaign. J Geophys Res D, Atmospheres 108:BIB 9–1–BIB 9-12

    Google Scholar 

  • Saari A, Rinnan R, Martikainen PJ (2004) Methane oxidation in boreal forest soils, kinetics and sensitivity to pH and ammonium. Soil Biol Biochem 36:1037–1046

    CAS  Google Scholar 

  • Sahrawat KL (2004) Terminal electron acceptors for controlling methane emissions from submerged rice soils. Comm Soil Sci Plant Anal 35:1401–1413

    CAS  Google Scholar 

  • Sanhueza E, Cardenas L, Donoso L, Santana M (1994) Effect of plowing on CO, CO2, CH4, NO, and N2O fluxes from tropical savannah soils. J Geophys Res 99(D8):16429–16434

    CAS  Google Scholar 

  • Sanhueza E, Donoso L (2006) Methane emission from tropical savanna Trachypogon sp. Grasses. Atmos Chem Phys 6:5315–5319

    Article  CAS  Google Scholar 

  • Schills RLM, Verhagen A, Aarts HFM, Kuikman PJ, Šebek LB (2006) Effect of improved nitrogen management on greenhouse gas emissions from intensive systems in The Netherlands. Global Change Biol 12:382–391

    Google Scholar 

  • Schnell S, King GM (1995) Stability of methane oxidation capacity to variations in methane and nutrient concentrations. FEMS Microbiol Ecol 17:285–294

    CAS  Google Scholar 

  • Schnell S, King GM (1996) Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol 62:3203–3209

    PubMed  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption, a review of processes underlying wetland methane fluxes. Biogeochem 41:23–51

    CAS  Google Scholar 

  • Seghers D, Top EM, Reheul D, Bulcke R, Boeckx P, Verstraete W, Siciliano SD (2003) Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils. Environ Microbiol 5:867–877

    PubMed  CAS  Google Scholar 

  • Sherlock RR, Sommers SG, Khan RZ, Wood CW, Guertal EA, Freney JR, Dawson CO, Cameron KC (2002) Ammonia, methane, and nitrous oxide emission from pig slurry applied to a pasture in New Zealand. J Environ Qual 31:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Singh BP, Allen DE, Mendham D, Wang WJ, Cowie A, Baldock J, Dalal RC, Raison RJ (2007) Understanding the drivers of N2O and CH4 fluxes during the transition from pasture to plantation forests. Non-CO2 greenhouse gas fluxes in Australian–New Zealand landscapes, Research Forum, 15–16 May 2007, Melbourne, Victoria, Australia

  • Singh JS, Raghubanshi AS, Reddy VS, Singh S, Kashyap AK (1998) Methane flux from irrigated paddy and dryland rice fields, and from seasonally dry tropical forest and savanna soils of India. Soil Biol Biochem 30:135–139

    CAS  Google Scholar 

  • Smialek J, Bouchard V, Lippmann B, Quigley M, Granata T, Martin J, Brown L (2006) Effect of a woody (Salix nigra) and an herbaceous (Juncus effusus) macrophyte species on methane dynamics and denitrification. Wetlands 26:509–517

    Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere, interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791

    Google Scholar 

  • Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Prieme A, Fowler D, MacDonald JA, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degorska A, Orlanski P (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biol 6:791–803

    Google Scholar 

  • Sovik AK, Augustin J, Heikkinen K, Huttunen JT, Necki JM, Karjalainen SM, Klove B, Liikanen A, Mander U, Puustinen M, Teiter S, Wachniew P (2006) Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal Env Qual 35:2360–2373

    CAS  Google Scholar 

  • Stadmark J, Leonardson L (2005) Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecol Engin 25:542–551

    Google Scholar 

  • Steudler PA, Bowden RD, Melillo JM, Aber JD (1989) Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–316

    Google Scholar 

  • Steudler PA, Melillo JM, Feigl BJ, Neill C, Piccolo MC, Cerri CC (1996) Consequence of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin. J Geophys Res D, Atmospheres 101:18547–18554

    CAS  Google Scholar 

  • Striegl RG, McConnaughey TA, Thorstenson DC, Weeks EP, Woodward JC (1992) Consumption of atmospheric methane by desert soils. Nature 357:145–147

    CAS  Google Scholar 

  • Sugimoto A, Fujita N (1997) Characteristics of methane emission from different vegetations on a wetland. Tellus, Series B, Chem Phys Meteorol 49:382–392

    Article  Google Scholar 

  • Sugimoto A, Inoue T, Tayasu I, Miller L, Takeichi S, Abe T (1998) Methane and hydrogen production in a termite-symbiont system. Ecol Res 13:241–257

    CAS  Google Scholar 

  • Suwanwaree P, Robertson GP (2005) Methane oxidation in forest, successional, and no-till agricultural ecosystems, effects of nitrogen and soil disturbance. Soil Sci Soc Am J 69:1722–1729

    CAS  Google Scholar 

  • Tate KR, Ross DJ, Scott NA, Rodda NJ, Townsend JA, Arnold GC (2006) Post-harvest patterns of carbon dioxide production, methane uptake and nitrous oxide production in a Pinus radiata D. Don plantation. Forest Ecol Manage 228:40–50

    Google Scholar 

  • Teepe R, Brumme R, Beese F, Ludwig B (2004) Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Sci Soc Am J 68:605–611

    Article  CAS  Google Scholar 

  • Teh YA, Silver WL, Conrad ME (2005) Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biol 11:1283–1297

    Google Scholar 

  • Templeton AS, Chu KH, Alvarez-Cohen L, Conrad ME (2006) Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta 70:1739–1752

    CAS  Google Scholar 

  • Tyler SC, Crill PM, Brailsford GW (1994) 13C/12C fractionation of methane during oxidation in a temperate forested soil. Geochim Cosmochim Acta 58:1625–1633

    CAS  Google Scholar 

  • Uz I, Rasche ME, Townsend T, Ogram AV, Lindner AS (2003) Characterization of methanogenic and methanotrophic assemblages in landfill samples. Proceedings Royal Soc London – Biol Sci 270:202–205

    Google Scholar 

  • Valentine DL, Chidthaisong A, Rice A, Reeburgh WS, Tyler SC (2004) Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim Cosmochim Acta 68:1571–1590

    CAS  Google Scholar 

  • Valentine DW, Holland EA, Schimel DS (1994) Ecosystem and physiological controls over methane production in a northern wetland. J Geophys Res 99:1563–1571

    CAS  Google Scholar 

  • Van Den Pol-Van Dasselaar A, Van Beusichem ML, Oenema O (1999) Effects of nitrogen input and grazing on methane fluxes of extensively and intensively managed grasslands in The Netherlands. Biol Fert Soils 29:24–30

    Google Scholar 

  • Van Der Weerden TJ, Sherlock RR, Williams PH, Cameron KC (1999) Nitrous oxide emissions and methane oxidation by soil following cultivation of two different leguminous pastures. Biol Fert Soils 30:52–60

    Google Scholar 

  • Van Hulzen JB, Segers R, Van Bodegom PM, Leffelaar PA (1999) Temperature effects on soil methane production, an explanation for observed variability. Soil Biol Biochem 31:1919–1929

    Google Scholar 

  • Vann CD, Megonigal JP (2003) Elevated CO2 and water depth regulation of methane emissions, comparison of woody and non-woody wetland plant species. Biogeochem 63:117–134

    CAS  Google Scholar 

  • Veldkamp E, Weitz AM, Keller M (2001) Management effects on methane fluxes in humid tropical pasture soils. Soil Biol Biochem 33:1493–1499

    CAS  Google Scholar 

  • Verchot LV, Davidson EA, Cattanio JH, Ackerman IL (2000) Land-use change and biogeochemical controls of methane fluxes in soils of Eastern Amazonia. Ecosys 3:41–56

    CAS  Google Scholar 

  • Von Arnold K, Nilsson M, Hånell B, Weslien P, Klemedtsson L (2005) Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biol Biochem 37:1059–1071

    Google Scholar 

  • Wagner D, Pfeiffer EM (1997) Two temperature optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiol Ecol 22:145–153

    CAS  Google Scholar 

  • Wagner-Riddle C, Park KH, Thurtell GW (2006) A micrometeorological mass balance approach for greenhouse gas flux measurements from stored animal manure. Agric Forest Meteorol 136:175–187

    Google Scholar 

  • Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr Cycl Agroecosys 58:349–356

    CAS  Google Scholar 

  • Wang ZP, Ineson P (2003) Methane oxidation in a temperate coniferous forest soil, effects of inorganic N. Soil Biol Biochem 35:427–433

    CAS  Google Scholar 

  • Wassmann R, Neue HU, Ladha JK, Aulakh MS (2004) Mitigating greenhouse gas emissions from rice-wheat cropping systems in Asia. Environ Develop Sus 6:65–90

    Google Scholar 

  • Wassmann R, Aulakh MS, Lantin RS, Rennenberg H, Aduna JB (2002) Methane emission patterns from rice fields planted to several rice cultivars for nine seasons. Nutr Cycl Agroecosys 64:111–124

    CAS  Google Scholar 

  • Wassmann R, Neue HU, Lantin RS, Makarim K, Chareonsilp N, Buendia LV, Rennenberg H (2000) Characterization of methane emissions from rice fields in Asia. II differences among irrigated, rainfed, and deepwater rice. Nutr Cycl Agroecosys 58:13–22

    CAS  Google Scholar 

  • Weier KL (1996) Trace gas emissions from a trash blanketed sugarcane field in tropical Australia. In: Wilson JR, Hogarth DM, Campbell JA, Garside AL (eds) Sugarcane, research towards efficient and sustainable production. CSIRO Division of Tropical Crops and Pastures, Brisbane, Australia, pp 271–272

    Google Scholar 

  • Weier KL (1998) Sugarcane fields, Sources or sinks for greenhouse gas emissions? Aus J Agric Res 49:1–9

    CAS  Google Scholar 

  • Weier KL (1999) N2O and CH4 emission and CH4 consumption in a sugarcane soil after variation in nitrogen and water application. Soil Biol Biochem 31:1931–1941

    CAS  Google Scholar 

  • Weiske A, Benckiser G, Ottow JCG (2001) Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutr Cycl Agroecosys 60:57–64

    CAS  Google Scholar 

  • Weitz AM, Veldkamp E, Keller M, Neff J, Crill PM (1998) Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest. J Geophys Res D, Atmospheres 103(D21):28047–28058

    CAS  Google Scholar 

  • Werle P, Slemr F, Maurer K, Kormann R, Mücke R, Jänker B (2002) Near- and mid-infrared laser-optical sensors for gas analysis. Optics Lasers Engineering 37:101–114

    Google Scholar 

  • Werner C, Kiese R, Butterbach-Bahl K (2007) Soil-atmosphere exchange of N2O, CH4 and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya. J Geophys Res 112:1–15

    Google Scholar 

  • Werner C, Zheng X, Tang J, Xie B, Liu C, Kiese R, Butterbach-Bahl K (2006) N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant Soil 289:335–353

    CAS  Google Scholar 

  • Westermann P (1993) Temperature regulation of methanogenesis in wetlands. Chemosphere 26:321–328

    CAS  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Engineering Sci 22:73–94

    CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (2000) Methane oxidation, production, and emission at contrasting sites in a Boreal bog. Geomicrobiol J 17:237–251

    CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Barber VA (1992) Oxidation of methane in boreal forest soils, a comparison of seven measures. Biogeochem 16:181–211

    CAS  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    CAS  Google Scholar 

  • Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments – isotopic evidence. Org Geochem 10:759–768

    CAS  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795

    CAS  Google Scholar 

  • Xu Z, Zheng X, Wang Y, Han S, Huang Y, Zhu J, Butterbach-Bahl K (2004) Effects of elevated CO2 and N fertilization on CH4 emissions from paddy rice fields. Glob Biogeochem Cycles 18:GB3009, 1–9

    Google Scholar 

  • Yagi K, Minami K (1990) Effect of organic matter applications on methane emission from some Japanese paddy fields. Soil Sci Plant Nutr 36:599–610

    CAS  Google Scholar 

  • Yagi K, Tsuruta H, Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Soil-source and sink of greenhouse gases. Nutr Cycl Agroecosys 49:213–220

    CAS  Google Scholar 

  • Yamulki S, Jarvis SC (2002) Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland. Biol Fert Soils 36:224–231

    CAS  Google Scholar 

  • Yan X, Yagi K, Akiyama H, Akimoto H (2005) Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biol 11:1131–1141

    Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (2005) Soil chemistry versus environmental controls on production of CH4 and CO2 in northern peatlands. Eur J Soil Sci 56:169–178

    CAS  Google Scholar 

  • Zheng X, Zhou Z, Wang Y, Zhu J, Wang Y, Yue J, Shi Y, Kobayashi K, Inubushi K, Huang Y, Han S, Xu Z, Xie B, Butterbach-Bahl K, Yang L (2006) Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biol 12:1717–1732

    Google Scholar 

Download references

Acknowledgments

We thank the Australian Greenhouse Office (National Carbon Accounting System), the Department of Environment and Water, and the Queensland Department of Natural Resources and Water, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Dalal.

Additional information

Responsible Editor: Klaus Butterbach-Bahl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalal, R.C., Allen, D.E., Livesley, S.J. et al. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309, 43–76 (2008). https://doi.org/10.1007/s11104-007-9446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9446-7

Keywords

Navigation