Skip to main content
Log in

Are Root Hydraulic Conductivity Responses to Salinity Controlled by Aquaporins in Broccoli Plants?

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Broccoli (Brassica oleracea L. var. Italica) is a recognised health-promoting vegetable, which is moderately sensitive to salinity. In this study, the primary response of broccoli plants (cv. Marathon) to salinity has been characterised. For this, leaf water relations, nutrient composition, root hydraulic conductivity (L 0) and the effect of mercury (an aquaporin blocker) on L 0 were determined for plants grown with 0, 20, 40, 60, 80 or 100 mM NaCl for 2 weeks. During the 2 weeks of treatment, the plants showed a two-phase growth response to salinity. During the first phase (1 week), growth reduction was high, probably related to water stress as no osmotic adjustment occurred and reductions of L 0, the mercury effect and Gs were observed. After 2 weeks, the growth reduction could have resulted from internal injury caused by Na+ or Cl, since osmotic adjustment was achieved and water relations plus the mercury effect were re-established to a high degree, indicating high aquaporin functionality. The fact that aquaporin functionality fits well with the overall water relations response is very relevant, since the two-phase adaptation to salinity may imply two types of aquaporin regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DTT:

dithiotreithol

Gs:

stomatal conductance

L 0 :

root hydraulic conductivity

Ψπ:

osmotic potential

Ψτ,:

turgor potential

Ψw:

water potential

RGR:

relative growth rate

References

  • P Agre M Bonhivers M J Borgnia (1998) ArticleTitleThe aquaporins, blueprints for cellular plumbing systems J. Biol. Chem. 273 14659–14662 Occurrence Handle9614059 Occurrence Handle1:CAS:528:DyaK1cXktVejurc%3D Occurrence Handle10.1074/jbc.273.24.14659

    Article  PubMed  CAS  Google Scholar 

  • M Ashraf (2001) ArticleTitleRelationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents Environ. Exp. Bot. 45 155–163 Occurrence Handle11275223 Occurrence Handle10.1016/S0098-8472(00)00090-3

    Article  PubMed  Google Scholar 

  • M Ashraf (2002) ArticleTitleSalt tolerance of cotton: some new advances Crit. Rev. Plant Sci. 21 1–30 Occurrence Handle1:CAS:528:DC%2BD38XhvFGhtr0%3D

    CAS  Google Scholar 

  • H Azaizeh E Steudle (1991) ArticleTitleEffects of salinity on water transport of excised maize (Zea mays, L.) roots Plant Physiol. 97 1136–1145 Occurrence Handle16668500 Occurrence Handle1:CAS:528:DyaK38XotVKhsg%3D%3D

    PubMed  CAS  Google Scholar 

  • E Bastias N Fernandez-Garcia M Carvajal (2004) ArticleTitleAquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity Plant Biol. 6 415–421 Occurrence Handle15248124 Occurrence Handle1:CAS:528:DC%2BD2cXmvFKmur4%3D Occurrence Handle10.1055/s-2004-820889

    Article  PubMed  CAS  Google Scholar 

  • M L Binzel F D Hess R A Bressan P M Hasegawa (1988) ArticleTitleIntracellular compartmentation of ions in salt adapted tobacco cells Plant Physiol. 86 607–614 Occurrence Handle16665954 Occurrence Handle1:CAS:528:DyaL1cXhsVOgur4%3D

    PubMed  CAS  Google Scholar 

  • A Blum R Munns J B Passioura C Turner (1996) ArticleTitleGenetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol. 110 1051–1053 Occurrence Handle12226240 Occurrence Handle1:CAS:528:DyaK28XitlWjsb0%3D

    PubMed  CAS  Google Scholar 

  • M Carvajal D T Cooke D T Clarkson (1996) ArticleTitleResponses of wheat plants to nutrient deprivation may involve the regulation of water-channel function Planta. 199 372–381 Occurrence Handle1:CAS:528:DyaK28XksFGlsLw%3D Occurrence Handle10.1007/BF00195729

    Article  CAS  Google Scholar 

  • M Carvajal V Martinez C F Alcaraz (1999) ArticleTitlePhysiological function of water channels as affected by salinity in roots of paprika pepper Physiol. Plant 105 95–101 Occurrence Handle1:CAS:528:DyaK1MXitFCktbs%3D Occurrence Handle10.1034/j.1399-3054.1999.105115.x

    Article  CAS  Google Scholar 

  • M Carvajal M C Martinez-Ballesta V Martinez (2000) The response of plants to salinity involves root water channels Hohmann Nielsen (Eds) Molecular Biology and Physiology of Water and Solute Transport Kluwer Academic/Plenum New York 261–267

    Google Scholar 

  • A Cerdá F T Bingham G J Hoffman C K Huszar (1979) ArticleTitleLeaf water potential and gaseous exchange of wheat and tomato as affected by NaCl and P levels in the root medium Agron. J. 71 27–31 Occurrence Handle10.2134/agronj1979.00021962007100010007x

    Article  Google Scholar 

  • M J Daniels F Chaumont T E Mirkov M J Chrispeels (1996) ArticleTitleCharacterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site Plant Cell 8 587–599 Occurrence Handle8624437 Occurrence Handle1:CAS:528:DyaK28Xis1Grtr8%3D Occurrence Handle10.1105/tpc.8.4.587

    Article  PubMed  CAS  Google Scholar 

  • M J Daniels T E Mirkov M J Chrispeels (1994) ArticleTitleThe plasma membrane of Arabidopsis thaliana contains mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP Plant Physiol. 106 1325–1333 Occurrence Handle7846153 Occurrence Handle1:CAS:528:DyaK2MXislensbo%3D Occurrence Handle10.1104/pp.106.4.1325

    Article  PubMed  CAS  Google Scholar 

  • R A Fisher (1921) ArticleTitleSome remarks on the methods formulated in a recent article on ‘The quantitative analysis of plant growth’ Ann. Appl. Biol. 7 367–372 Occurrence Handle10.1111/j.1744-7348.1921.tb05524.x

    Article  Google Scholar 

  • H Greenway R Munns (1980) ArticleTitleMechanism of salt tolerance in nonhalophytes Ann. Rev. Plant Physiol. 31 149–190 Occurrence Handle1:CAS:528:DyaL3cXksVWntb4%3D Occurrence Handle10.1146/annurev.pp.31.060180.001053

    Article  CAS  Google Scholar 

  • P M Hasegawa R A Bressan J K Zhu H J Bohnert (2000) ArticleTitlePlant cellular and molecular responses to high salinity Ann. Rev. Plant Physiol. Plant Mol. Biol. 51 463–499 Occurrence Handle1:CAS:528:DC%2BD3cXlsVymt7s%3D Occurrence Handle10.1146/annurev.arplant.51.1.463

    Article  CAS  Google Scholar 

  • D R Hoagland D I Arnon (1938) ArticleTitleThe water culture method for growing plants without soil California Agriculture Experiment Station Circular 347 1–39 Occurrence Handle1:CAS:528:DyaA1MXmsFSluw%3D%3D

    CAS  Google Scholar 

  • R Hunt D R Causton B Shipley A P Askew (2002) ArticleTitleA modern tool for classical plant growth analysis Ann. Bot. 90 485–488 Occurrence Handle12324272 Occurrence Handle1:STN:280:DC%2BD38vovVartA%3D%3D Occurrence Handle10.1093/aob/mcf214

    Article  PubMed  CAS  Google Scholar 

  • Jackson M B, Davies W J and Else M A 1996 Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann. Bot. 77, 17–24.

    Google Scholar 

  • W Kammerloher U Fischer G P Piechottka A R Schaffner (1994) ArticleTitleWater channels in the plant plasma-membrane cloned by immunoselection from a mammalian expression system Plant J. 6 187–199 Occurrence Handle7920711 Occurrence Handle1:CAS:528:DyaK2MXhtlGntL8%3D Occurrence Handle10.1046/j.1365-313X.1994.6020187.x

    Article  PubMed  CAS  Google Scholar 

  • S Kawasaki C Borchert M Deyholos H Wang S Brazille K Kawai D Galbraith H J Bohnert (2001) ArticleTitleGene expression profiles during the initial phase of salt stress in rice Plant Cell 13 889–905 Occurrence Handle11283343 Occurrence Handle1:CAS:528:DC%2BD3MXjtFajsrw%3D Occurrence Handle10.1105/tpc.13.4.889

    Article  PubMed  CAS  Google Scholar 

  • A Maggio R J Joly (1995) ArticleTitleEffects of mercuric chloride on the hydraulic conductivity of tomato root systems. Evidence for a channel mediated water pathway Plant Physiol. 109 331–335 Occurrence Handle12228599 Occurrence Handle1:CAS:528:DyaK2MXotFWmsbc%3D

    PubMed  CAS  Google Scholar 

  • M M F Mansour (2000) ArticleTitleNitrogen containing compounds and adaptation of plants to salinity stress Biol. Plant 43 491–500 Occurrence Handle1:CAS:528:DC%2BD3cXosFKjurc%3D Occurrence Handle10.1023/A:1002873531707

    Article  CAS  Google Scholar 

  • H Marschner (1995) Mineral Nutrition of Higher Plants Academic Press London

    Google Scholar 

  • M C Martinez-Ballesta F Aparicio V Pallas V Martinez M Carvajal (2003a) ArticleTitleInfluence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis J. Plant Physiol. 160 689–697 Occurrence Handle1:CAS:528:DC%2BD3sXmtFehtbY%3D Occurrence Handle10.1078/0176-1617-00861

    Article  CAS  Google Scholar 

  • M C Martinez-Ballesta V Martinez M Carvajal (2003b) ArticleTitleAquaporin functionality in relation to H+-ATPase activity in root cells of Capsicum annuum grown under salinity Physiol. Plant 117 413–420 Occurrence Handle1:CAS:528:DC%2BD3sXkslCitro%3D Occurrence Handle10.1034/j.1399-3054.2003.00044.x

    Article  CAS  Google Scholar 

  • M C Martinez-Ballesta V Martinez M Carvajal (2000) ArticleTitleRegulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions Aust. J. Plant Physiol. 27 685–691

    Google Scholar 

  • C Maurel M J Chrispeels (2001) ArticleTitleAquaporins. A molecular entry into plant water relations Plant Physiol. 125 135–138 Occurrence Handle11154316 Occurrence Handle1:CAS:528:DC%2BD3MXjslymur4%3D Occurrence Handle10.1104/pp.125.1.135

    Article  PubMed  CAS  Google Scholar 

  • C Maurel J Reizer J I Schroeder M J Chrispeels (1993) ArticleTitleThe vacuolar membrane protein g-TIP creates water specific channels in Xenopus oocytes EMBO J. 12 2241–2247 Occurrence Handle8508761 Occurrence Handle1:CAS:528:DyaK3sXltFeguro%3D

    PubMed  CAS  Google Scholar 

  • R Munns (1993) ArticleTitlePhysiological processes limiting plant growth in saline soils: some dogmas and hypotheses Plant Cell Environ. 16 15–24 Occurrence Handle1:CAS:528:DyaK3sXks1yjsr0%3D Occurrence Handle10.1111/j.1365-3040.1993.tb00840.x

    Article  CAS  Google Scholar 

  • R Munns (2002) ArticleTitleComparative physiology of salt and water stress Plant Cell Environ. 25 239–250 Occurrence Handle11841667 Occurrence Handle1:CAS:528:DC%2BD38Xhslakurw%3D Occurrence Handle10.1046/j.0016-8025.2001.00808.x

    Article  PubMed  CAS  Google Scholar 

  • R Munns J B Passioura (1984) ArticleTitleHydraulic resistance of plants. III. Effects of NaCl in barley and lupin Aust. J. Plant Physiol. 11 351–359 Occurrence Handle1:CAS:528:DyaL2MXlvFGgtQ%3D%3D Occurrence Handle10.1071/PP9840351

    Article  CAS  Google Scholar 

  • G B North P Martre Nobel (2004) ArticleTitleAquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil Plant Cell Environ. 27 219–228 Occurrence Handle1:CAS:528:DC%2BD2cXisFKqsrs%3D Occurrence Handle10.1111/j.1365-3040.2003.01137.x

    Article  CAS  Google Scholar 

  • M Patra A Sharma (2000) ArticleTitleMercury toxicity in plants Bot. Rev. 66 379–422

    Google Scholar 

  • G M Preston T P Carroll W B Guggino P Agre (1992) ArticleTitleAppearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein Science 256 385–387 Occurrence Handle1373524 Occurrence Handle1:CAS:528:DyaK38Xitlakt7w%3D

    PubMed  CAS  Google Scholar 

  • J A Raven (1985) ArticleTitleRegulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water New Phytol. 101 25–77 Occurrence Handle1:CAS:528:DyaL2MXmtFWjt7g%3D Occurrence Handle10.1111/j.1469-8137.1985.tb02816.x

    Article  CAS  Google Scholar 

  • A R Schäffner (1998) ArticleTitleAquaporin function structure and expression: are there more surprises to surface in water relations? Planta 204 131–139 Occurrence Handle9487723 Occurrence Handle10.1007/s004250050239

    Article  PubMed  Google Scholar 

  • K Schütz S D Tyerman (1997) ArticleTitleWater channels in Chara corallina J. Exp. Bot. 48 1511–1518 Occurrence Handle10.1093/jexbot/48.313.1511

    Article  Google Scholar 

  • J Shalhevet E V Maas G J Hoffman G Ogata (1976) ArticleTitleSalinity and the hydraulic conductance of roots Physiol. Plant. 38 224–232 Occurrence Handle1:CAS:528:DyaE2sXktVahtA%3D%3D Occurrence Handle10.1111/j.1399-3054.1976.tb03995.x

    Article  CAS  Google Scholar 

  • M C Shannon (1998) ArticleTitleAdaptation of plants to salinity Adv. Agron. 60 75–119

    Google Scholar 

  • M C Shannon C M Grieve (1999) ArticleTitleTolerance of vegetable crops to salinity Sci. Hortic.-Amsterdam 78 5–38 Occurrence Handle1:CAS:528:DyaK1cXnsFaisLk%3D Occurrence Handle10.1016/S0304-4238(98)00189-7

    Article  CAS  Google Scholar 

  • M C Shannon C M Grieve L E Francois (1994) Whole-Plant Response to Salinity R E Wilkinson (Eds) Plant Environment Interactions Marcel Dekker New York 199–244

    Google Scholar 

  • C G Suhayda J L Giannini D P Briskin M C Shannon (1990) ArticleTitleElectrostatic changes in Lycopersicon esculetum root plasma membrane resulting from salt stress Plant Physiol. 93 471–478 Occurrence Handle16667490 Occurrence Handle1:CAS:528:DyaK3cXkslGitLk%3D Occurrence Handle10.1104/pp.93.2.471

    Article  PubMed  CAS  Google Scholar 

  • M Tester (2003) ArticleTitleNa+ tolerance and Na+ transport in higher plants Ann. Bot.-London 91 503–507 Occurrence Handle1:CAS:528:DC%2BD3sXjsVyisbk%3D Occurrence Handle10.1093/aob/mcg058

    Article  CAS  Google Scholar 

  • X C Wan J J Zwiazek (1999) ArticleTitleMercuric chloride effects on root water transport in aspen seedlings Plant Physiol. 121 939–946 Occurrence Handle10557243 Occurrence Handle1:CAS:528:DyaK1MXns12ntb0%3D Occurrence Handle10.1104/pp.121.3.939

    Article  PubMed  CAS  Google Scholar 

  • I Winicov (1998) ArticleTitleNew molecular approaches to improving salt tolerance in crop plants Ann. Bot.-London 82 703–710 Occurrence Handle1:CAS:528:DyaK1MXks1Ogsw%3D%3D Occurrence Handle10.1006/anbo.1998.0731

    Article  CAS  Google Scholar 

  • A R Yeo (1983) ArticleTitleSalinity resistance: physiologies and prices Physiol. Plant 58 214–222 Occurrence Handle1:CAS:528:DyaL3sXktlGqsLw%3D Occurrence Handle10.1111/j.1399-3054.1983.tb04172.x

    Article  CAS  Google Scholar 

  • J K Zhu (2001) ArticleTitlePlant salt tolerance Trends Plant Sci. 6 66–71 Occurrence Handle11173290 Occurrence Handle1:CAS:528:DC%2BD3MXlsFyjtLs%3D Occurrence Handle10.1016/S1360-1385(00)01838-0

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Carvajal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Berenguer, C., García-Viguera, C. & Carvajal, M. Are Root Hydraulic Conductivity Responses to Salinity Controlled by Aquaporins in Broccoli Plants?. Plant Soil 279, 13–23 (2006). https://doi.org/10.1007/s11104-005-7010-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-7010-x

Key words:

Navigation