Skip to main content
Log in

Chemically Assisted Phytoextraction of Heavy Metal Contaminated Soils using Three Plant Species

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Phytoextraction is a potential, innovative and cost-effective technology for non-destructive remediation of heavy metal-contaminated soils. A field trial was conducted to evaluate the phytoextraction efficiencies of three plants and the effects of EDTA or ammonium addition [(NH4)2SO4 and NH4NO3] for assisting heavy metal (Pb, Zn, and Cd) removal from contaminated soil. The tested plants include Viola baoshanensis, Vertiveria zizanioides, and Rumex K-1 (Rumex patientia  ×  R. timschmicus). The application of EDTA soil was the most efficient to enhance the phytoavailability of Pb and Zn, but did not have significant effect on Cd. Lead phytoextraction rates of V. baoshanensis, V. zizanioides and Rumex K-1 were improved by 19-, 2-, and 13-folds compared with the control treatment, respectively. The application of ammonium did not have obvious effects on phytoextraction of the three metals, except that the accumulations of Zn and Cd in shoot of V. baoshanensis. Among the three tested plants, V. baoshanensis always accumulated the highest concentrations of Pb, Zn, and Cd. The concentrations of Pb, Zn, and Cd in the shoots of V. baoshanensis treated with EDTA were 624, 795, and 25 mg kg−1, respectively, and the phytoextraction efficiencies of this species for Pb, Zn, and Cd were also the highest among the three species. Results presented here indicated that V. baoshanensis had great potential in phytoremediation of soils contaminated by multiple heavy metals, although the dry weight yield was the lowest among the three plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S E Allen (1989 ) Chemical Analysis of Ecological Materials EditionNumber2nd Edn. Blackwell Scientific Publications Oxford

    Google Scholar 

  • A J M Baker R R Brooks (1998) Terrestrial higher plants which hyperaccumulate metalic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81––126

    Google Scholar 

  • A J M Baker S P McGrath C M D Sidoli R D Reeves (1994) ArticleTitleThe possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants Res. Conserv. Recy. 11 41–49

    Google Scholar 

  • M J Blaylock D E Salt S Dushenkov O Zakharova C Gussman Y Kapulnik B D Ensley I Raskin (1997) ArticleTitleI. Enhanced accumulation of Pb in Indian mustard by soil-applied chelation agents Environ. Sci. Technol. 31 860–865 Occurrence Handle10.1021/es960552a

    Article  Google Scholar 

  • M J Blaylock (1999) Field demonstrations of phytoremediation of lead contaminated soils G S. Banuelos N E. Terry (Eds) Phytoremediation of Trace Elements Ann Arbor Press Ann Arbor, MI

    Google Scholar 

  • M J Blaylock J W Huang (2000 ) Phytoextraction of metals I Raskin. & B D Ensley (Eds) Phytoremediation of Toxic Metals Using Plants to Clean up the Environment John Wiley & Sons, Inc. New York pp. 53–70

    Google Scholar 

  • S L Brown R L Chaney J S Angle A J M Baker (1994) ArticleTitlePhytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soils J. Environ. Qual. 23 1151–1157 Occurrence Handle1:CAS:528:DyaK2cXntVSjsL8%3D

    CAS  Google Scholar 

  • S L Brown R L Chaney J S Angle A J M Baker (1995) ArticleTitleZinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution Soil Sci. Soc. Am. J. 59 125–133 Occurrence Handle1:CAS:528:DyaK2MXjtleltr0%3D Occurrence Handle10.2136/sssaj1995.03615995005900010020x

    Article  CAS  Google Scholar 

  • K Cambra T Martinez A Urzelai E Alonso (1999) ArticleTitleRisk analysis of area near a lead-and cadmium-contaminated industrial site J. Environ. Health 8 527–540 Occurrence Handle1:CAS:528:DyaK1MXmvVGls7Y%3D

    CAS  Google Scholar 

  • R L Chaney M Malik Y M Li S L Brown E P Brewer J S Angle A J M Baker (1997) ArticleTitlePhytoremediation of soil metals Curr. Opin. Biotech. 8 279–284 Occurrence Handle1:CAS:528:DyaK2sXjvFSqtbc%3D Occurrence Handle9206007

    CAS  PubMed  Google Scholar 

  • H Chen T Cutright (2001) ArticleTitleEDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus Chemosphere 45 21–28 Occurrence Handle1:CAS:528:DC%2BD3MXlsFymsbw%3D Occurrence Handle11572587

    CAS  PubMed  Google Scholar 

  • E M Cooper J T Sims S D Cunningham J W Huang W R Berti (1999) ArticleTitleChelate-assisted phytoextraction of lead from contaminated soil J. Environ. Qual. 28 1709–1719 Occurrence Handle1:CAS:528:DC%2BD3cXhtFWgsA%3D%3D Occurrence Handle10.2134/jeq1999.00472425002800060004x

    Article  CAS  Google Scholar 

  • S C Cunningham W R Berti J W Huang (1995) ArticleTitlePhytoremediation of contaminated soils TIBtech. 13 393–379 Occurrence Handle1:CAS:528:DyaK2MXosVKisLk%3D

    CAS  Google Scholar 

  • S Dudka D C Adriano (1997) ArticleTitleEnvironmental impacts of metal ore mining and processing: a review J. Environ. Qual. 26 590–602 Occurrence Handle1:CAS:528:DyaK2sXjsVCmtrk%3D Occurrence Handle10.2134/jeq1997.00472425002600030003x

    Article  CAS  Google Scholar 

  • S Dushenkov D Vasudev D Gleba (1999) ArticleTitlePhytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine Environ. Sci. Technol. 33 469–475 Occurrence Handle10.1021/es980788+ Occurrence Handle1:CAS:528:DyaK1cXnvV2nu74%3D

    Article  CAS  Google Scholar 

  • S D Ebbs M M Lasat D J Brady J Cornish R Gordon L V Kochian (1997) ArticleTitlePhytoextraction of cadmium and zinc from a contaminated site J. Environ. Qual. 26 1424–30 Occurrence Handle1:CAS:528:DyaK2sXmsFequ7g%3D

    CAS  Google Scholar 

  • S D Ebbs L V Kochian (1998) ArticleTitlePhytoextraction of Zn by oat (Avena sativa), barley (Hordium vulgare) and Indian mustard (Brassica juncea) Environ. Sci. Technol. 32 802–806 Occurrence Handle10.1021/es970698p Occurrence Handle1:CAS:528:DyaK1cXovVWjsg%3D%3D

    Article  CAS  Google Scholar 

  • A L Epstein C D Gussman M J Blaylock U Yermiyahu J W Huang Y Kapulnik C S Orser (1999) ArticleTitleEDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil Plant Soil 208 87–94 Occurrence Handle10.1023/A:1004539027990 Occurrence Handle1:CAS:528:DyaK1MXltFGisLg%3D

    Article  CAS  Google Scholar 

  • J W Huang J Chen W B Berti S D Cunningham (1997) ArticleTitlePhytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction Environ. Sci. Technol. 31 800–805 Occurrence Handle1:CAS:528:DyaK2sXotVWlug%3D%3D

    CAS  Google Scholar 

  • J W Huang S D Cunningham (1996) ArticleTitleLead phytoextraction: species variation in lead uptake and translocation New Phytol. 134 75–84 Occurrence Handle1:CAS:528:DyaK28XmsFSktL4%3D

    CAS  Google Scholar 

  • G Geiger P Federer H Sticker (1993) ArticleTitleReclamation of heavy metal contaminated soils: field soils germination experiments J. Environ. Qual. 22 201–207 Occurrence Handle1:CAS:528:DyaK3sXhvFSktrs%3D Occurrence Handle10.2134/jeq1993.00472425002200010027x

    Article  CAS  Google Scholar 

  • D J Glass (2000) Economic potential of phytoremediation I Raskin B.D. Ensley (Eds) Phytoremediation of Toxic Metals Using Plants to Clean up the Environment John Wiley & Sons, Inc. New York pp. 15–31

    Google Scholar 

  • H Grčman Š Velikonja-Bolta D Vodnik B Kos D Leštan (2001) ArticleTitleEDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity Plant Soil 235 105–114

    Google Scholar 

  • X J Jiang Y M Luo Q G Zhao A J M Baker P Christie M H Wong (2003) ArticleTitleSoil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil Chemosphere 50 813–818 Occurrence Handle1:CAS:528:DC%2BD38XptlCrs70%3D Occurrence Handle12688496

    CAS  PubMed  Google Scholar 

  • A Kayser K Wenger A Keller W Attinger H R Felix S K Gupta R Schulin (2000) ArticleTitleEnhancement of phytoextration of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments Environ. Sci. Technol. 34 1778–1783 Occurrence Handle10.1021/es990697s Occurrence Handle1:CAS:528:DC%2BD3cXhvFKjs7Y%3D

    Article  CAS  Google Scholar 

  • B Knight F J Zhao S P McGrath Z G Shen (1997) ArticleTitleZinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution Plant Soil 197 71–78 Occurrence Handle10.1023/A:1004255323909 Occurrence Handle1:CAS:528:DyaK1cXjs12lsg%3D%3D

    Article  CAS  Google Scholar 

  • B Kos D Leštan (2003) ArticleTitleInfluence of a biodegradable ([S,S]-EDDS) and non-degradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching Plant Soil 253 403–411 Occurrence Handle10.1023/A:1024861725626 Occurrence Handle1:CAS:528:DC%2BD3sXlsFKqsrY%3D

    Article  CAS  Google Scholar 

  • N P B A Kumar V Dushenkov H Motto I Raskin (1995) ArticleTitlePhytoextraction: the use of plants to remove heavy metals from soils Environ. Sci. Technol. 29 1232–1238 Occurrence Handle10.1021/es00005a014 Occurrence Handle1:CAS:528:DyaK2MXkvVWltbY%3D

    Article  CAS  Google Scholar 

  • M M Lasat M Fuhrmann S D Ebbs J E Cornish L V Kochian (1998) ArticleTitlePhytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species J. Environ. Qual. 27 165–169 Occurrence Handle1:CAS:528:DyaK1cXmtFGiuw%3D%3D Occurrence Handle10.2134/jeq1998.00472425002700010023x

    Article  CAS  Google Scholar 

  • M S Liphadzi M B Kirkham K R Mankin G M Paulsen (2003) ArticleTitleEDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm Plant Soil 257 171–182 Occurrence Handle10.1023/A:1026294830323 Occurrence Handle1:CAS:528:DC%2BD3sXot1Cmtbc%3D

    Article  CAS  Google Scholar 

  • X M Liu J H Nie Q R Wang ( 2002) ArticleTitleResearch on lead uptake and tolerance in six plants Acta Phytoec. Sin. 26 533–537

    Google Scholar 

  • Liu (2004) ArticleTitleViola baoshanensis, a species that hyperaccumulates cadmium Chinese Sci. Bull 49 29–32 Occurrence Handle1:CAS:528:DC%2BD2cXitVSjtLg%3D

    CAS  Google Scholar 

  • E Lombi F J Zhao S J Dunham S P McGrath (2001) ArticleTitlePhytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction J. Environ. Qual. 30 1919–1926 Occurrence Handle1:CAS:528:DC%2BD38Xht1SlsL4%3D Occurrence Handle11789997 Occurrence Handle10.2134/jeq2001.1919

    Article  CAS  PubMed  Google Scholar 

  • J B Michael J W Huang (2000) Phytoextraction of metals I Raskin B D Ensley (Eds) Phytoremediation of Toxic Metals Using Plants to Clean up the Environment John Wiley & Sons Inc. New York 53–70

    Google Scholar 

  • S McGrath C M D Sidoli A J M Baker R D Reeves (1993) The potential for the use of metal-accumulation plants for the in situ, decontamination of metal-polluted soils HJP Eijsackrs T Hamers (Eds) Integrated Soil and Sediment Research: A Basis for Proper Protection Kluwer Academic Publishers Dordrecht, The Netherlands pp. 673–676

    Google Scholar 

  • S P McGrath F J Zhao (2003) ArticleTitlePhytoextraction of metals and metalloids from contaminated soils Curr. Opin. Biotech. 14 277–282 Occurrence Handle1:CAS:528:DC%2BD3sXltVSqsrc%3D Occurrence Handle12849780

    CAS  PubMed  Google Scholar 

  • Page A L, Miller R H and Keener D R 1982 Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (2nd edn.), Agronomy No. 9. American society of agronomy and soil science society of America, Madison, Wisconsin

  • M Pucshenreiter G Stöger E Lombi O Horak W W Wenzel (2001) ArticleTitlePhytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate J. Plant Nutr. Soil Sci. 164 615–621

    Google Scholar 

  • I Raskin N P B A Kumar S Dushenkov D E Salt (1994) ArticleTitleBioconcentration of heavy metals by plants Curr. Opin. Biotech. 5 285–290 Occurrence Handle1:CAS:528:DyaK2cXkslyhsb4%3D

    CAS  Google Scholar 

  • B H Robinson A Chiarucci R R Broods D Petit J␣H Kirkman P E H Gregg V DeDominicis (1997) ArticleTitleThe nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel J.␣Geochem. Explor. 59 75–86 Occurrence Handle1:CAS:528:DyaK2sXjtlWmsrs%3D

    CAS  Google Scholar 

  • D Roger R D Reeves A J M Baker (2000) Metal-accumulating plants I Raskin B D Ensley (Eds) Phytoremediation of Toxic Metals Using Plants to Clean up the Environment John Wiley & Sons Inc. New York pp. 193–220

    Google Scholar 

  • D E Salt M J Blaylock P B A N Kumar V Dushenkov B D Ensley I Chet I Raskin (1995) ArticleTitlePhytoremediation: a novel strategy for the removal of toxic metals from the environment using plants Biotechnology 13 468–474 Occurrence Handle1:CAS:528:DyaK2MXlsVynu7w%3D Occurrence Handle9634787

    CAS  PubMed  Google Scholar 

  • D E Salt R D Smith I Raskin (1998) ArticleTitleRhytoremediation Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 643–668 Occurrence Handle10.1146/annurev.arplant.49.1.643 Occurrence Handle1:CAS:528:DyaK1cXjvVSgs7g%3D Occurrence Handle15012249

    Article  CAS  PubMed  Google Scholar 

  • W S Shu Z H Ye C Y Lan Z Q Zhang M H Wong (2001) ArticleTitleAcidification of lead/zinc mine tailings and its effect on heavy metal mobility Environ. Int. 26 389–394 Occurrence Handle10.1016/S0160-4120(01)00017-4 Occurrence Handle1:CAS:528:DC%2BD3MXkslOjtbc%3D Occurrence Handle11392756

    Article  CAS  PubMed  Google Scholar 

  • W S Shu H P Xia Z Q Zhang C Y Lan M H Wong (2002) ArticleTitleUse of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: field experiment Int. J. Phytor. 4 47–57 Occurrence Handle1:CAS:528:DC%2BD38XjtFSgsL0%3D

    CAS  Google Scholar 

  • W S Shu W Liu C Y Lan (2003) ArticleTitleViola baoshanensis–a new species of violaceae from Human Province, China Acta Sci. Nat. Univ. SunYat-sen 42 118–119

    Google Scholar 

  • M C Steele J Pichtel (1998) ArticleTitleEx-situ remediation of metal contaminated superfund soil using selective extractants J.␣Environ. Eng. 124 639–645 Occurrence Handle1:CAS:528:DyaK1cXjvVOksrk%3D

    CAS  Google Scholar 

  • Truong P N V, Baker D E. 1998 Vetiver grass for the stabilization and rehabilitation of acid sulfate soils. In Proceedings of Second National Conference on Acid Sulfate Soils, Coffs Harbour, Australia, pp. 196–198

  • P Vervaeke S Luyssaert J Mertens E Meers F M G Tack N Lust (2003) ArticleTitlePhytoremediation prospects of willow stands on contaminated sediment: a field trial Environ. Pollut. 126 275–282 Occurrence Handle10.1016/S0269-7491(03)00189-1 Occurrence Handle1:CAS:528:DC%2BD3sXmsVGqsrY%3D Occurrence Handle12927498

    Article  CAS  PubMed  Google Scholar 

  • Q W Yang W S Shu J W Qiu H B Wang C Y Lan (2004) ArticleTitleLead in paddy soils and rice plants and its potential health risk around Lechang lead/zinc mine, Guangdong, China Environ. Int. 30 883–889 Occurrence Handle1:CAS:528:DC%2BD2cXkvFWgtbc%3D Occurrence Handle15196836

    CAS  PubMed  Google Scholar 

  • F J Zhao E Lombi S P McGrath (2003) ArticleTitleAssessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens Plant Soil 249 37–43 Occurrence Handle10.1023/A:1022530217289 Occurrence Handle1:CAS:528:DC%2BD3sXhsVyrsro%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.S. Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, P., Ye, Z., Lan, C. et al. Chemically Assisted Phytoextraction of Heavy Metal Contaminated Soils using Three Plant Species. Plant Soil 276, 153–162 (2005). https://doi.org/10.1007/s11104-005-3901-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-3901-0

Keywords

Navigation