Skip to main content
Log in

The role of iron nanoparticles on morpho-physiological traits and genes expression (IRT1 and CAT) in rue (Ruta graveolens)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The iron nanoparticles with different physic-chemical properties induce inconsistent effects on various studied plant species. Thus, the effect of ferric oxide (Fe2O3) nanoparticles was compared with Fe2O3 microparticles and FeSO4complexes of EDTA for major physiological and gene expression in Rue (Ruta graveolens). Iron root content increased as Fe-MPs + EDTA ˂˂ Fe-NPs + EDTA˂ FeSO4 + EDTA. The shoot’s iron remained unchanged or slightly increased under most of FeSO4 and Fe-MPs + EDTA treatments. Under Fe-NPs + EDTA treatment, 50 and 250 µM concentration decreased on shoot iron by 23.2% and 19.4% compared to control, respectively. But the shoot iron at 500 µM NPs was 28.2% higher than that of the control. A 46–58 fold lower Fe translocation was observed under Fe-NPs + EDTA than Fe-MPs + EDTA. The effect of Fe-NPs + EDTA was more significant on plant fresh and dry mass than the control. All treatments showed an increase in anthocyanin by 19–84% in leaves compared to the control. The Fe-NPs + EDTA and MPs + EDTA induced similar effects on enhanced growth parameters, total chlorophyll, catalase enzyme activity, gene, and reduced chlorophyll a/b and oxidants. Catalase enzyme activity in FeSO4 and MPs + EDTA was similar, and in Fe-NPs + EDTA treatments were influenced by coarse and fine regulation mechanisms, respectively. Iron MPs + EDTA had a more negative effect on IRT1 relative gene expression in roots as compared to other iron forms. The IRT1 relative gene expression in shoots was positively affected by 31–81% under all treatment types (except control and 250 µM Fe-NPs + EDTA, and 250 µM MPs + EDTA). These results could reveal the potential mechanism of plant response to nanoparticles.

Key message

Fe2O3 nanoparticles with EDTA increased Fe bioavailability in rue plant but ameliorated metal toxicity. Fe2O3 nanoparticles induced dose-dependent and combined oxidative, growth and ion transporter promoting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Abogadallah GM, Serag MM, Quick WP (2010) Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiol Plant 138(1):60–73

    Article  CAS  PubMed  Google Scholar 

  • Asgarpanah J, Khoshkam R (2012) Phytochemistry and pharmacological properties of Ruta graveolens L. J Med Plant Res 6(23):3942–3949

    CAS  Google Scholar 

  • Barrutia O, Garbisu C, Hernández-Allica J, García-Plazaola JI, Becerril JM (2010) Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut 158(5):1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell K (2015) Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci 16(10):24174–24193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Caramanico L, Rustioni L, De Lorenzis G (2017) Iron deficiency stimulates anthocyanin accumulation in grapevine apical leaves. Plant Physiol Bioch 119:286–293

    Article  CAS  Google Scholar 

  • Chutipaijit S, Cha-um S, Sompornpailin K (2011) High contents of proline and anthocyanin increase protective response to salinity in 'Oryza sativa’ L. spp.‘indica.’ Aust J Crop Sci 5(10):1191–1198

    CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14(6):1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121(2):151–159

    Article  CAS  Google Scholar 

  • Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83

    Article  Google Scholar 

  • Hall J, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hothem SD, Marley KA, Larson RA (2003) Photochemistry in Hoagland’s nutrient solution. J Plant Nutr 26(4):845–854

    Article  CAS  Google Scholar 

  • Iannone MF, Groppa MD, de Sousa ME, van Raap MBF, Benavides MP (2016) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra Y (1997) Handbook of reference methods for plant analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  • Krishnaswamy S, Spitzer MH, Mingueneau M, Bendall SC, Litvin O, Stone E, Pe’er D, Nolan GP (2014) Conditional density-based analysis of T cell signaling in single-cell data. Science 346(6213):1250689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Libralato G, Devoti AC, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Ghirardini AV (2016) Phytotoxicity of ionic, micro-and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem 1(1):F4.3.1-F4.3.8

    Article  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42

    Article  CAS  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6(1):41–59

    Article  CAS  Google Scholar 

  • Malik S, Moraes DFC, do Amaral FMM, Ribeiro MNS (2017) Ruta graveolens: phytochemistry, pharmacology, and biotechnology. Transgenesis Second Metab 4:177–204

    Article  Google Scholar 

  • Mazaheri-Tirani M, Dayani S (2019) In vitro effect of zinc oxide nanoparticles on Nicotiana tabacum callus compared to ZnO micro particles and zinc sulfate (ZnSO4). Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-019-01725-0

    Article  Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Samson D, Tack F (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58(8):1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Michael PI, Krishnaswamy M (2014) Membrane damage and activity of antioxidant enzymes in response to zinc and high irradiance stress in cowpea plant. Int J Curr Res 2(10):112–128

    CAS  Google Scholar 

  • Mirecki N, Agic R, Sunic L, Milenkovic L, Ilic S (2015) Transfer factor as indicator of heavy metals content in plants. Fresenius Environ Bull 24(11c):4212–4219

    CAS  Google Scholar 

  • Nourozi E, Hosseini B, Maleki R, Abdollahi Mandoulakani B (2019) Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric 99(14):6418–6430

    Article  CAS  PubMed  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5(5):333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavić V, Flačer D, Jakovljević M, Molnar M, Jokić S (2019) Assessment of total phenolic content, in vitro antioxidant and antibacterial activity of Ruta graveolens L. extracts obtained by choline chloride based natural deep eutectic solvents. Plants 8(3):69

    Article  PubMed Central  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36–e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  CAS  PubMed  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Alcalá I, Del Campillo M, Torrent J (2014) Extraction with 0.01 M CaCl2 underestimates the concentration of phosphorus in the soil solution. Soil Use Manage 30(2):297–302

    Google Scholar 

  • Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Sci Biol 2(2):112–113

    Article  Google Scholar 

  • Shi P, Song C, Chen H, Duan B, Zhang Z, Meng J (2018) Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. merlot grown in the iron deficiency soil. Food Chem 253:164–170

    Article  CAS  PubMed  Google Scholar 

  • Souri MK, Hatamian M (2019) Aminochelates in plant nutrition: a review. J Plant Nutr 42(1):67–78

    Article  CAS  Google Scholar 

  • Tirani M, Haghjou M (2019) Reactive oxygen species (ROS), total antioxidant capacity (AOC) and malondialdehyde (MDA) make a triangle in evaluation of zinc stress extension. J Anim Plant Sci 29(4):1100–1111

    CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Nhan L, Ma C, Rui Y, Cao W, Deng Y, Liu L, Xing B (2016) The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Front Plant Sci 6:1263

    PubMed  PubMed Central  Google Scholar 

  • Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31(5):589–599

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ (1979) Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol 64(1):88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-x, Hu Y, Zhu Y-f, Baloch AW, Jia X-m, Guo A-x (2018) Transcriptional and physiological analyses of short-term Iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis. BMC Genomics 19(1):461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang S, Xu M, Xiao L, Dai Z, Li J (2019) The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ Pollut 249:1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Wegner A, Meiser J, Weindl D, Hiller K (2015) How metabolites modulate metabolic flux. Curr Opin Biotechnol 34:16–22

    Article  CAS  PubMed  Google Scholar 

  • Wojcieszek J, Jiménez-Lamana J, Ruzik L, Szpunar J, Jarosz M (2020) To-do and not-to-do in model studies of the uptake, fate and metabolism of metal-containing nanoparticles in plants. Nanomaterials 10(8):1480

    Article  CAS  PubMed Central  Google Scholar 

  • Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169

    Article  CAS  Google Scholar 

  • Yousefzadeh S, Sabaghnia N (2016) Nano-iron fertilizer effects on some plant traits of dragonhead (Dracocephalum moldavica L.) under different sowing densities. Acta Agric Slov 107(2):429–437

    Article  Google Scholar 

  • Zhang X, Zhang D, Sun W, Wang T (2019) The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int J Mol Sci 20(10):2424

    Article  PubMed Central  CAS  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—a review. Plant Physiol Biochem 110:236–264

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MM-T designed the research and supervised the experiments and analyzed physiology data and drafted the manuscript. AK performed experiments. MKD supervised the experiments and analyzed molecular data.

Corresponding author

Correspondence to Maryam Mazaheri-Tirani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazaheri-Tirani, M., Kashani, A. & Koohi-Dehkordi, M. The role of iron nanoparticles on morpho-physiological traits and genes expression (IRT1 and CAT) in rue (Ruta graveolens). Plant Mol Biol 110, 147–160 (2022). https://doi.org/10.1007/s11103-022-01292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01292-7

Keywords

Navigation