Skip to main content
Log in

Transcriptomic analysis provides insights into the AUXIN RESPONSE FACTOR 6-mediated repression of nicotine biosynthesis in tobacco (Nicotiana tabacum L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

NtARF6 overexpression represses nicotine biosynthesis in tobacco. Transcriptome analysis suggests that NtARF6 acts as a regulatory hub that connect different phytohormone signaling pathways to antagonize the jasmonic acid-induced nicotine biosynthesis.

Abstract

Plant specialized metabolic pathways are regulated by a plethora of molecular regulators that form complex networks. In Nicotiana tabacum, nicotine biosynthesis is regulated by transcriptional activators, such as NtMYC2 and the NIC2-locus ERFs. However, the underlying molecular mechanism of the regulatory feedback is largely unknown. Previous research has shown that NbARF1, a nicotine synthesis repressor, reduces nicotine accumulation in N. benthamiana. In this study, we demonstrated that overexpression of NtARF6, an ortholog of NbARF1, was able to reduce pyridine alkaloid accumulation in tobacco. We found that NtARF6 could not directly repress the transcriptional activities of the key nicotine pathway structural gene promoters. Transcriptomic analysis suggested that this NtARF6-induced deactivation of alkaloid biosynthesis might be achieved by the antagonistic effect between jasmonic acid (JA) and other plant hormone signaling pathways, such as ethylene (ETH), salicylic acid (SA), abscisic acid (ABA). The repression of JA biosynthesis is accompanied by the induction of ETH, ABA, and SA signaling and pathogenic infection defensive responses, resulting in counteracting JA-induced metabolic reprogramming and decreasing the expression of nicotine biosynthetic genes in vivo. This study provides transcriptomic evidence for the regulatory mechanism of the NtARF6-mediated repression of alkaloid biosynthesis and indicates that this ARF transcription factor might act as a regulatory hub to connect different hormone signaling pathways in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Sequencing data for root tissue RNA from the EV control line (SAMN18145490), three NtARF6-OE lines (SAMN18145491, SAMN18145492, and SAMN18145493 of N. tabacum cv. Coker176 were available from BioProject PRJNA706840 (https://www.ncbi.nlm.nih.gov/bioproject/). The genome and gene model of N. tabacum cv. K326 used for RNA-sequencing analysis were available at ftp://ftp.solgenomics . net/genomes/Nicotiana_tabacum/edwards_et_al_2017/assembly/Ntab-v4.5_genome_Scf_Edards2017.fasta.gz  and ftp://ftp.solgenomics.net/genomes/Nicotiana_tabacum/edwards_et_al_2017/annotation/Ntab-v4.5_gene_models_Scf_Edwards2017.gff , respectively. The differential expressed genes and enriched KEGG pathways are included in this published article and its supplementary information files.

References

  • Anders A, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 18 July 2021

  • Baldwin IT, Schmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris spegazzini and comes. J Chem Ecol 20:2139–2157

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Sun JQ, Zhai QZ, Zhou WK, Qi LL, Xu L, Wang B, Chen R, Jiang HL, Qi J, Li XG, Palme K, Li CY (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23:3335–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Gimenez-Ibanez S, Goossens A, Solano R (2016) Redundancy and specificity in jasmonate signaling. Curr Opin Plant Biol 33:147–156

    Article  CAS  PubMed  Google Scholar 

  • Chow C, Lee T, Hung Y, Li G, Tseng K, Liu Y, Kuo P, Zheng H, Chang W (2019) PlantPan3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acid Res 47:1155–1163

    Article  Google Scholar 

  • Clarke JD, Liu Y, Klessig DF, Dong X (1998) Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell 10:557–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colinas M, Goossens A (2018) Combinatorial transcriptional control of plant specialized metabolism. Trends Plant Sci 23:324–336

    Article  CAS  PubMed  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18:448

    Article  CAS  Google Scholar 

  • Guifoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  Google Scholar 

  • Gupta V, Willits MG, Glazebrook J (2000) Arabidopsis thaliana EDS4emclose contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant-Microbe Interact 13:503–511

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001) Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26:509–522

    Article  CAS  PubMed  Google Scholar 

  • Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Hakkinen S, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey K, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA 108:5891–5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laudert D, Weiler EW (1998) Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signaling. Plant J 15:675–684

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Wang S, Wu H, Wang H (2020) Protein levels of several Arabidopsis auxin response factors are regulated by multiple factors and ABA promotes ARF6 protein ubiquitination. Int J Mol Sci 21:9437

    Article  CAS  PubMed Central  Google Scholar 

  • Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed J, van der Knaap E (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to flora development defects and female sterility in tomato. J Exp Bot 65:2507–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrtis cinereal. New Phytol 198:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Roosjen M, Paque S, Weijers D (2018) Auxin response factors: output control in auxin biology. J Exp Bot 69:178–188

    Article  CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  CAS  PubMed  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF12 transcription. Plant J 50:128–139

    Article  CAS  PubMed  Google Scholar 

  • Nugroho LH, Peltenburg-Looman AMG, de Vos H, Verberne MC, Verpoorte R (2002) Nicotine and related alkaloids accumulation in constitutive salicylic acid producing tobacco plants. Plant Sci 162:575–581

    Article  CAS  Google Scholar 

  • Paul P, Singh SK, Patra B, Sui X, Pattanaik S, Yuan L (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213:1107–1123

    Article  CAS  PubMed  Google Scholar 

  • Paul P, Singh SK, Patra B, Liu X, Pattanaik S, Yuan L (2020) Mutually regulated AP2/ERF gene clusters modulate biosynthesis of specialized metabolites in plants. Plant Physiol 182:840–856

    Article  CAS  PubMed  Google Scholar 

  • Pauw B, Hilliou FAO, Martin VS, Chatel G, de Wolf CJF, Champion A, Pré M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inzé D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105:1380–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmoate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    Article  CAS  PubMed  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plant under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    Article  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Taguso RA (2018) Why do plants produce so many terpenoid compounds? New Phytol 220:692–702

    Article  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leno-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Bai S, Li W, Sun T, Galbraith DW, Yang Z, Zhou Y, Sun G, Wang B (2020) Transcriptome analysis reveals key genes involved in the regulation of nicotine biosynthesis at early time points after topping in tobacco (Nicotiana tabacum L). BMC Plant Biol 20:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chetelat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW (2012) A regulatory network for coordinated flower maturation. PLoS Genet 8:e1002506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA 167. Cell Res 16:457–465

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Hashimoto T (2011) Nicotine biosynthesis in plant metabolism and biotechnology. Wiley, Chichester, pp 191–216

    Book  Google Scholar 

  • Shoji T, Nakajima K, Hashimoto T (2000) Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. Plant Cell Physiol 60:1072–1076

    Article  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boisson B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45:477–488

    Article  PubMed  Google Scholar 

  • Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2020) Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Sci 293:110408

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates crosstalk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui X, Singh SK, Patra B, Schluttenhofer C, Guo W, Pattanaik S, Yuan L (2018) Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. J Exp Bot 69:4267–4281

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and flora organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    Article  CAS  PubMed  Google Scholar 

  • Thangavelu M, Belostotsky D, Bevan MW, Flavell RB, Rogers HJ, Lonsdale DM (1993) Partial characterization of the Nicotiana tabacum actin gene family: evidence for pollen-specific expression of one of the gene family members. Mol Gen Genet 240:290–295

    Article  CAS  PubMed  Google Scholar 

  • Todd AT, Liu E, Polvi SL, Pammett RT, Page JE (2010) A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. Plant J 62:589–600

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Motrazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Lewis R, Shi J, Song Z, Gao Y, Li W, Chen H, Qu R (2015) Genetic factors for enhancement of nicotine levels in cultivated tobacco. Sci Rep 5:17360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wastemack C, Strnad M (2017) Jasmonates are signals in the biosynthesis of secondary metabolites—pathways, transcription factors and applied aspects—a brief review. N Biotechnol 48:1–11

    Article  CAS  Google Scholar 

  • Weijers D, Wagner D (2016) Transcriptional responses to the auxin hormone. Annu Rev Plant Biol 67:539–574

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Winz RA, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata IV Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol 125:2189–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Lazarowitz SG, Citovsky V (2017) Identification of plasmodesmal localization sequences in proteins in planta. J Vis Exp 126:55301

    Google Scholar 

  • Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pré M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhu Z, An F, Hao D, Li P, Song J, Yi C, Guo H (2014) Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26:1105–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Memelink J (2016) Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 34:441–449

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Jiang AM, Kim Z, To JM, Li TK, Zhang W, Yu X, Dong Q, Chen Z, Seki WQ, Zhou M, Guo JM (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA 108:12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ge Bai (Yunnan Academy of Tobacco Agricultural Sciences, China) for critical comments on this manuscript. This research was supported by the Projects of YATAS (Contract No. 2019530000241005 and 2017YN05), and the National Natural Science Foundation of China (Grant No. 31860069) to XS.

Author information

Authors and Affiliations

Authors

Contributions

XS designed the study; MH, YG, ZS, CY, CH, and LZ performed experiments; BW, CH, YZ, and CZ analyzed data; XS, ZH, HM, LW, and CZ wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xueyi Sui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Zhang, H., Wang, B. et al. Transcriptomic analysis provides insights into the AUXIN RESPONSE FACTOR 6-mediated repression of nicotine biosynthesis in tobacco (Nicotiana tabacum L.). Plant Mol Biol 107, 21–36 (2021). https://doi.org/10.1007/s11103-021-01175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01175-3

Keywords

Navigation