Skip to main content
Log in

Widespread occurrence of natural genetic transformation of plants by Agrobacterium

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Naturally transgenic plant species occur on an unexpectedly large scale.

Abstract

Agrobacterium-mediated gene transfer leads to the formation of crown galls or hairy roots, due to expression of transferred T-DNA genes. Spontaneous regeneration of transformed cells can produce natural transformants carrying cellular T-DNA (cT-DNA) sequences of bacterial origin. This particular type of horizontal gene transfer (HGT) could play a role in plant evolution. However, the material available today is not enough for generalizations concerning the role of Agrobacterium in HGT from bacteria to plants. In this study, we searched for T-DNA-like genes in the sequenced genomes of dicots and monocots. We demonstrate the presence of cT-DNAs in 23 out of 275 dicot species, within genera Eutrema, Arachis, Nissolia, Quillaja, Euphorbia, Parasponia, Trema, Humulus, Psidium, Eugenia, Juglans, Azadirachta, Silene, Dianthus, Vaccinium, Camellia, and Cuscuta. Analysis of transcriptome data of 356 dicot species yielded 16 additional naturally transgenic species. Thus, HGT from Agrobacterium to dicots is remarkably widespread. Opine synthesis genes are most frequent, followed by plast genes. Species in the genera Parasponia, Trema, Camellia, Azadirachta, Quillaja, and Diospyros contain a combination of plast and opine genes. Some are intact and expressed, but the majority have internal stop codons. Among the sequenced monocot species, Dioscorea alata (greater yam) and Musa acuminata (banana) also contain T-DNA-like sequences. The identified examples are valuable material for future research on the role of Agrobacterium-derived genes in plant evolution, for investigations on Agrobacterium strain diversity, and for studies on the function and evolution of cT-DNA genes in natural transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acuna R, Padilla BE, Florez-Ramos CP, Rubio JD, Herrera JC, Benavides P, Lee SJ, Yeats TH, Egan AN, Doyle JJ, Rose JK (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci USA 109:4197–4202

    Article  CAS  PubMed  Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20

    Article  Google Scholar 

  • Binns AN, Sciaky D, Wood HN (1982) Variation in hormone autonomy and regenerative potential of cells transformed by strain A66 of Agrobacterium tumefaciens. Cell 31:605–612

    Article  CAS  PubMed  Google Scholar 

  • Chen K (2016) Sequencing and functional analysis of cT-DNAs in Nicotiana. PhD Thesis University of Strasbourg, France

  • Chen K, Otten L (2017) Natural Agrobacterium transformants: recent results and some theoretical considerations. Front Plant Sci 8:e1600

    Article  Google Scholar 

  • Chen K, Dorlhac de Borne F, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669–682

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Dorlhac de Borne F, Julio E, Obszynski J, Pale P, Otten L (2016) Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring GMO Nicotiana tabacum. Plant J 87:258–269

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Dorlhac de Borne F, Sierro N, Ivanov NV, Alouia M, Koechler S, Otten L (2018) Organization of the TC and TE cellular T-DNA regions in Nicotiana otophora and functional analysis of three diverged TE-6b genes. Plant J 94:274–287

    Article  CAS  PubMed  Google Scholar 

  • Cormier F, Lawac F, Maledon E, Gravillon MC, Nudol E, Mourmet P, Vignes H, Chaïr H, Arnau G (2019) A reference high-density genetic map of greater yam (Dioscorea alata L.). Theor Appl Genet 132:1733–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Xu C, Li W, Xie X, Lu Y, Liu Y, Jin X, Suo Z (2017) Phylogenetic resolution in Juglans based on complete chloroplast genomes and nuclear DNA sequences. Front Plant Sci 8:e1148

    Article  Google Scholar 

  • e Santos DN, de Souza L, Nilson JF, de Oliveira AL (2015) Study of supercritical extraction from Brazilian cherry seeds (Eugenia uniflora L.) with bioactive compounds. Food Bioprod Process 94:365–374

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fournier P, Paulus F, Otten L (1993) IS870 requires a 5′-CTAG-3′ sequence to generate the stop codon for its large ORF1. J Bact 175:3151–3160

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Reno X, Mason AS, Liu H, Xiao M, Li J, Fu D (2014) Horizontal gene transfer in plants. Funct Integr Genomics 14(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2017) Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet 51:195–217

    Article  CAS  PubMed  Google Scholar 

  • Guillermo S, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94(12):1963–1971

    Article  Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempé J, Biermann B, Montoya AL, Chilton M-D, Brevet J (1991) Agrobacterium rhizogenes pRi8196: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root function. Proc Natl Acad Sci USA 88:7763–7767

    Article  CAS  PubMed  Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • Kausik B, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of Neem (Azadirachta indica). Curr Sci 82(11):1336–1345

    Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Gheysen Liu Q, Kreuze JF (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112(18):5844–5849

    Article  CAS  PubMed  Google Scholar 

  • Machida Y, Sakurai M, Kiyokawa S, Ubasawa A, Suzuki Y, Ikeda J-E (1984) Nucleotide sequence of the insertion sequence found in the T-DNA region of mutant Ti plasmid pTiA66 and distribution of its homologues in octopine Ti plasmid. Proc Natl Acad Sci USA 81:7495–7499

    Article  CAS  PubMed  Google Scholar 

  • Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol Plant Microbe Interact 25(12):1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Matveeva TV, Bogomaz OD, Golovanova LA, Li YuS, Dimitrov D (2018) Homologs of the rolC gene of naturally transgenic toadflaxes Linaria vulgaris and Linaria creticola are expressed in vitro. Vavilovskii Zhurnal Genetiki i Selektsii 22(2):273–278

    Google Scholar 

  • Mohajjel-Shoja H, Clément B, Perot J, Alioua M, Otten L (2011) Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relationship to other plast genes. Mol Plant Microbe Interact 24:44–53

    Article  CAS  PubMed  Google Scholar 

  • Morton J (1987) Surinam cherry. In: Fruits of warm climates. Miami, p 386–388

  • Muravieva DA (1983) Tropical and subtropical medicinal plants. Moscow: Medicine (in Russian)

  • O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745

    Article  PubMed  CAS  Google Scholar 

  • Ooms G, Bakker A, Molendijk L, Wullems GJ, Gordon MP, Nester EW, Schilperoort RA (1982) T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Cell 30:589–597

    Article  CAS  PubMed  Google Scholar 

  • Op den Camp RHM, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJM, Bisseling T, Geurts R (2012) Nonlegume Parasponia andersonii deploys a broad Rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol Plant Microbe Interact 25:954–963

    Article  CAS  PubMed  Google Scholar 

  • Otten L (2018) The Agrobacterium phenotypic plasticity (plast) genes. Curr Top Microbiol Immunol 418:375–419

    CAS  PubMed  Google Scholar 

  • Otten L, Canaday J, Gérard JC, Fournier P, Crouzet P, Paulus F (1992) Evolution of agrobacteria and their Ti plasmids: a review. Mol Plant Microbe Interact 5:79–87

    Article  Google Scholar 

  • Pattee HE, Stalker HT, Giesbrecht FG (1998) Reproductive efficiency in reciprocal crosses of Arachis monticola with A. hypogaea subspecies. Peanut Sci 25:7–12

    Article  Google Scholar 

  • Pavlova OA, Matveeva TV, Lutova LA (2013) Linaria dalmatica genome contains a homologue of rolC gene of Agrobacterium rhizogenes. Ecol Genet 11:10–15

    Article  Google Scholar 

  • Ramanathan V, Veluthambi K (1995) Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid from the left terminus of TL-DNA. Plant Mol Biol 28:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW (2006) Evolutionary origins of the eukaryotic shikimate pathway: gene fusions horizontal gene transfer and endosymbiotic replacements. Eukaryot Cell 5(9):1517–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schäfer W, Görz A, Kahl G (1987) T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532

    Article  Google Scholar 

  • Stanford AM, Harden R, Parks CR (2000) Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. Am J Bot 87:872–882

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sc 10:5350–5369

    Article  CAS  Google Scholar 

  • Ulker B, Li Y, Rosso MG, Logemann E, Somssich IE, Weisshaar B (2008) T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotech 26:1015–1017

    Article  CAS  Google Scholar 

  • van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, Tijsterman M (2016) T-DNA integration in plants results from polymerase-θ—mediated DNA repair. Nat Plants 2:16164

    Article  PubMed  CAS  Google Scholar 

  • Wei C, Yang H, Wang S et al (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115(18):E4151–E4158

    Article  CAS  PubMed  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequence homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially carried out using the software of the St. Petersburg State University Resource Center “Development of molecular and cellular technologies”. We would like to dedicate this work to the memory of Rob Schilperoort, one of the pioneers in Agrobacterium research and founder of Plant Molecular Biology.

Funding

Funding for T.M. was obtained from the Russian Science Foundation (Grant No. 16-16-10010).

Author information

Authors and Affiliations

Authors

Contributions

TM found new naturally transgenic plants, TM and LO characterized cT-DNA structures and prepared the manuscript.

Corresponding author

Correspondence to Léon Otten.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2019_913_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 1906 kb) Fig. 1. cus and mas2′ homologs in the genomes of species of genus Arachis and their possible origin

11103_2019_913_MOESM2_ESM.jpg

Supplementary material 2 (JPEG 289 kb) Fig. 2. Species of genus Juglans: relationship (based on ITS) and presence of cT-DNA. Modified from Stanford et al. 2000. J. sigillata has been added according to Dong et al. 2017. Underlined species have been sequenced. Asterisk: species with cT-DNA

11103_2019_913_MOESM3_ESM.jpg

Supplementary material 3 (JPEG 191 kb) Fig. 3. Molecular phylogenetic analysis of vis homologs in P. andersonii, T. orientalis, H. lupulus lupulus and H. lupulus cordifolius by Maximum Likelihood method. L and R: left and right arm of repeat. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in number of substitutions per site. The analysis involved eight nucleotide sequences. There were a total of 1074 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 (Kumar et al. 2016)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveeva, T.V., Otten, L. Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Mol Biol 101, 415–437 (2019). https://doi.org/10.1007/s11103-019-00913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00913-y

Keywords

Navigation